

Geotechnical and Acid Sulfate Soil Assessment

Proposed Rezoning at 196 Old Main Road, 263, 269, 271, 273, 293 and 321 Gan Gan Road, Anna Bay, NSW

Final Report

P2208888JR07V01.docx December 2024 Prepared for AB Rise Pty Ltd C/- DMPS

environmental science & engineering

Project Details

Report Title Geotechnical and Acid Sulfate Soil Assessment: Proposed Rezoning at 196 Old Main Road, 263, 269, 271, 273, 293

and 321 Gan Gan Road, Anna Bay, NSW

Client AB Rise Pty Ltd C/- DMPS

Document P2208888JR07V01.docx

DirectorDr Daniel MartensManagerMo ShahrokhianPrincipal AuthorDr Wasiul Bari

Document History

Issue	Issue Date	Status	Description / Comment	Author	Reviewer	Approved
1.	13/12/2024	Final	For PP	WB	JF/RE/MS	MS

© Copyright Martens & Associates Pty Ltd Suite 201, 20 George St, Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 P +61-2-9476-9999 | mail@martens.com.au | www.martens.com.au

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

Contents

1	Introdu	uction & Background	5
	1.1	Overview	5
	1.2	Location and General Site Description Details	5
	1.3	Proposed Development	
	1.4	Investigation Scope of Work	
	1.5	Previous MA Assessment	
	1.6	Other Assessments	
2		etails and Subsurface Conditions	
	2.1	General Site Details	8
	2.2	Subsurface Conditions	
	2.3	Groundwater	
	2.3.1	Monitoring Well Installation	
	2.3.2	Borehole Observations	
	2.3.3	Monitoring Well Installation	11
	2.3.4	Comments	11
3	Acid S	ulfate Soil (ASS) Assessment	13
	3.1	Guidelines	13
	3.2	Acid Sulfate Soil Risk Map Classification	13
	3.3	Geomorphic Setting	13
	3.4	Field Testing and Action Criteria	13
	3.5	Soil Analytical Results	
	3.6	Results	
	3.7	Discussion / Conclusion	
4	-	azards and Risk Assessment	
	4.1	Overview	18
	4.2	Potential Hazards	18
	4.3	Risk Mitigation Measures	
	4.3.1	PASS Material Risk Management	
	4.3.2	Groundwater Risk Management	
	4.3.3	Dwelling Construction Risk Management	
	4.4	Conclusion	20
5	Geotec	chnical Assessment	21
	5.1	Laboratory Testing	21
	5.1.1	Particle Size Distribution (PSD) Results	21
	5.1.2	Atterberg Limits Testing	
	5.2	Risk of Slope Instability	
	5.2.1	Site Observations	
	5.2.2	Sand Dune Stability	
	5.2.3	Preliminary Slope Instability Discussion	
•	5.3	Geotechnical Constraints	
6	Geotec	chnical Recommendations	24
	6.1	Overview	24
	6.2	The Sand Dune	24

	6.3	Site Preparation and Earthworks24	
	6.3.1	General Recommendations	
	6.3.2	Ground Treatment for Filling over Soft Soils	
	6.3.3	Settlement Monitoring	
	6.4	Long Term Settlement Management25	
	6.5	Drainage Requirements25	
	6.6	Soil Erosion Control	
	6.7	Site Classification	
	6.8	Construction Considerations26	
7	Propose	ed Additional Works27	
8	Referen	ces28	
App	endix A	– Maps29	
App	endix B	- Borehole and Monitoring Well Logs40	
		- DCP Test Results84	
App	endix D	- CPT Results89	
App	endix E	- Chromium Suite Analytical Results120	
App	endix F	- Laboratory Test Certificates126	
App	endix G	- Hillside Construction Guidelines (AGS, 2007)174	
App	endix H	- General Geotechnical Recommendations177	
App	oendix I -	Notes about this Report180	
Tab	les		
Ta	able 1: Su	ımmary of Site details	. 5
Ta		ımmary of general Site details based on desktop reviews and field investigations	
Ta	able 3: Su	ımmary of groundwater inflow levels in boreholes and groundwater levels ed in CPT results1	
Ta	able 4: Su	ımmary of groundwater level statistics from continuous monitoring1	1
Ta	able 5: Sit	te geomorphic features indicative of ASS1	3
Ta	able 6: La	boratory field screening result summary1	4
Ta	able 7: Su	ımmary of laboratory PSD test results2	21
Ta	able 8: Su	ımmary of laboratory Atterberg limits test results	21

1 Introduction & Background

1.1 Overview

The purpose of the geotechnical and acid sulfate soil (**ASS**) assessment is to support a Planning Proposal (**PP**) for the proposed land rezoning and future residential subdivision at 196 Old Main Road, 263, 269, 271, 273, 293 and 321 Gan Gan Road, Anna Bay, NSW (the **Site**).

The Site comprises a group of adjoining lots to the north of Gan Gan Road. The extent of the Site is shown on Map 01, Appendix A. The combined area of the Site is approximately 117.57 hectares. We note that there is an area in the southern portion of 293 and 321 Gan Gan Road which is subject to an existing development application (**DA**). This small portion of the Site is currently zoned residential and is not included as part of this PP.

1.2 Location and General Site Description Details

General location and general Site description details are summarised in Table 1 below.

Table 1: Summary of Site details.

Item	Description / Comment				
Lot / DP, Site address,	Lot 963 in DP 731955 - 196 Old Main Road, Anna Bay, NSW, 27.15 ha.				
and approximate area	Lot 21 in DP 590387 - 263 Gan Gan Road, Anna Bay, NSW, 28.58 ha.				
	Lot 23 in DP 590387 - 269 Gan Gan Road, Anna Bay, NSW, 0.12 ha.				
	Lot 1 in DP 536752 - 271 Gan Gan Road, Anna Bay, NSW, 19.20 ha.				
	Lot 901 in DP 436550 - 273 Gan Gan Road, Anna Bay, NSW, 1.0 ha.				
	Lot 902 in DP 634550 - 293 Gan Gan Road, Anna Bay, NSW, 31.38 ha.				
	Lot 1 in DP 503876 - 321 Gan Gan Road, Anna Bay, NSW, 11.26 ha.				
	Refer Map 01, Appendix A for the location of the Site.				
LGA	Port Stephens Council ('Council').				
Current zoning	196 Old Main Road, Anna Bay, NSW				
(ePLanning Spatial Viewer)	RU2 – Rural Landscape				
,	263 and 271 Gan Gan Road, Anna Bay, NSW				
	RU2 – Rural Landscape				
	293 and 321 Gan Gan Road, Anna Bay, NSW				
	R2 – Low Density Residential				
	C3 – Environmental Management				
	RU2 – Rural Landscape				

1.3 Proposed Development

The master plan of the development (BKA, 2024) indicates that the future development will involve:

- Subdivision of the Site into residential allotments.
- Construction of associated new internal access roads and stormwater drainage infrastructure (including stormwater treatment basins).

- Widening of an existing east-west aligned channel (i.e. Anna Bay main drain) in the central portion of the Site.
- Provision of public open / recreational and ecological spaces.

Based on the preliminary map set (P2208888MS16-R02, dated 13 December, 2024) prepared by MA (MA, 2024a), the following earthworks are anticipated to be undertaken at the Site:

- Filling of up to approximately 4.9 m above existing ground level within the proposed lots and roadways.
- No or little cutting is expected to be required across the majority of the Site where
 there lot development is proposed. A maximum cut of approximately 2.2 m is
 expected to be required across a small area in the south eastern portion of the Site.
- Excavation up to approximately 2.5 mbgl for the widening of the existing channel will be undertaken without altering the current base level (varies between -1.38 mAHD and -2.3 mAHD) of the channel. A total cut volume of approximately 25,000 m³ is expected to be required as part of channel widening.
- Construction of several shallow unlined stormwater detention basins (the basin(s))
 across the site, with a base level of -0.1 mAHD. This will require excavation of up to
 approximately 2.0 mbgl in some basin locations.

An east-west aligned remnant sand dune is located in the southern portion of the Site. We understand that the future residential subdivision will not extend into the footprint of the sand dune (the **Sand Dune**).

1.4 Investigation Scope of Work

Field investigations were conducted on 13 to 16 September and 5 to 7 December 2022, 7 and 8 February 2023, 4 April 2023 and 11 April 2024. Works in relation to this assessment included:

- 1. Review of BYDA survey plans and buried services searches.
- A walkover inspection of the Site to review local geology, surface hydrology and topography.
- Drilling of thirty three boreholes (BH101 to BH107, BH110 to BH129 and BH133 to BH138) via solid flight auger up to a maximum depth of 6.0 metres below ground level (mbgl).
- 4. Ten cone penetration tests (CPT) (CPT101 to CPT110) to CPT refusal depth of up to 22.0 mbgl. We note that CPT102, CPT103 and CPT107 to CPT109 were undertaken near the crest of an east-west aligned Sand Dune through the southern portion of the Site.
- Twenty three dynamic cone penetrometer (DCP) tests (DCP101 to DCP105 and DCP107 to DCP124) up to 4.4 mbgl.
- 6. Six standard penetration tests (SPTs), in BH105 and BH114.
- Construction of ten groundwater monitoring wells (MW) (MW01 in BH101, MW02 in BH106, MW04 in BH110, MW05 in BH112, MW08 in BH116, MW09 in BH118, MW10 in BH121, MW11 in BH124, MW12 in BH126 and MW13 in BH129).
- 8. Collection of soil samples for future reference and laboratory testing.

Investigation locations are shown in Maps 05 – 09, Appendix A.

1.5 Previous MA Assessment

A geotechnical, groundwater and acid sulfate soil assessment was previously undertaken by Martens and Associates (MA) to support the development application (**DA**) for the proposed subdivision across the small portion of land across the southern portions of 263, 273, 293 and 321 Gan Gan Road, Anna Bay (refer Map 01 for the footprint area associated with the DA). The assessment involved drilling of fourteen boreholes (BH108, BH109 and BH201 to BH212), two CPTs (CPT111 and CPT112) and installation of three MWs (MW03 in BH109, MW06 in BH206 and MW07 in BH207) as shown in Maps 07 – 10, Attachment A. Results of this assessment are presented in MA's report referenced P2208888JR04V01, dated July 2023 (MA, 2023). Reference has been made to the findings of the geotechnical, groundwater and acid sulfate soil assessment, where necessary, however have not been reproduced as part of this report.

1.6 Other Assessments

A previous geotechnical investigation was conducted by Douglas Partners (DP, 2005) to support a development proposal for a residential subdivision and golf course at the Site (and surrounding land in close proximity to the Site). The proposal was ultimately unsuccessful, however DP (2005) included an assessment of the subsurface conditions and geotechnical constraints at the Site including a ground settlement analysis. The data and findings of the DP (2005) report have been considered but not reproduced in this report.

A summary of the field investigation undertaken by DP (2005) and relevant conclusions are presented below:

- a) The geotechnical investigation included:
 - i. Excavation of 129 test pits and drilling of thirteen boreholes.
 - ii. Seventy CPTs.

CPT locations within the Site are shown on Maps 07 – 10, Appendix A.

- b) In general, the subsurface profile in the northern portion of the Site (to the north of the Sand Dune) comprised organic silty topsoil and very soft to firm silty clay to varying depths, overlying sand. The thickness of the clay typically ranged between 2 m and 4 m. The underlying sand was initially loose grading to medium dense or dense. The southern portion of the Site (to the south of the Sand Dune) typically comprised loose grading to dense sand.
- Subsurface conditions were assessed to be susceptible to significant differential, total and likely creep settlements caused by consolidation of the underlying compressible very soft to firm clays. Careful treatment of these soils was recommended.
- d) Where expected large settlements could not be tolerated, consideration was to be given to preloading to remove some settlements prior to building construction, or alternatively supporting the buildings on piled foundations. Settlements were recommended to be monitored during any period of preloading.
- e) Consolidation settlement over 50 years was expected to be between approximately 20 mm and 130 mm. Differential settlement was expected to be around 30% to 40% of the total settlement.
- f) Fill batters should not exceed 1V:3H.

2 Site Details and Subsurface Conditions

2.1 General Site Details

General Site details are summarised in Table 2.

Table 2: Summary of general Site details based on desktop reviews and field investigations.

Item	Description / Comment
Topography	The majority of the central and northern portion of the Site is near level and low-lying. The Sand Dune in the southern portion of the Site extends adjacent to and parallel with Gan Gan Road. A network of man-made east-west and north-south aligned drainage channels are located within the low-lying northern Site portion.
Typical slopes, aspect, elevation	The majority of the Site to the north of the Sand Dune is relatively flat with grades of less than 2 % and elevations between approximately 0.5 m to 3 mAHD (TSS, 2023a).
	A small area of the Site to the south of the Sand Dune, along Gan Gan Road, generally has a southerly aspect with an overall grade of less than 5 %. Areas immediately adjacent to the southern toe of the Sand Dune have grades of between approximately 10 % and 20 %. The elevations of this portion of the Site range between approximately 4.5 mAHD and 6 mAHD (TSS, 2023b).
	The Sand Dune has general grades of between approximately 20 % and 30 %, with some steeper grades of between approximately 40 % and 60 %. The ground elevation at the toe of the Sand Dune is approximately 6.0 mAHD increasing to approximately 23.0 mAHD at the crest (TSS, 2023b).
	Ground elevation contours for the Site are presented in Map 02, Appendix A.
Expected geology	Quaternary deposits comprising gravel, sand, silt, clay, Waterloo rock, marine and freshwater deposits (Site geology is shown in Map 03, Appendix A).
Soil landscape (refer Map 04, Appendix A)	The NSW Office of Environment and Heritage's (OEH) information system (eSPADE) indicates the majority of the Site to the north of the Sand Dune is underlain by the Bobs Farm (bf) soil landscape while the Sand Dune and portion of the Site to the south of the Sand Dune is underlain by the Shoal Bay (sb) soil landscape. They comprise the following:
	 The Bobs Farm soil landscape consists typically of flat, swampy, Holocene estuarine plains with slope gradients <1% and elevations between 1 and 3 mAHD. This soil landscape is often characterised by deep (> 300 cm) estuarine swamp deposits comprising slit and clay and is well known for flooding, foundation hazard and seasonal water logging, permanently high water tables and acid sulphate potential.
	 The Shoal Bay soil landscape consists typically of gently inclined, deep (> 300 cm) and well drained Pleistocene aeolian sand sheets to rolling very low dunes, with slope gradients generally <5 % (but on slopes of rolling dunes up to 15 %) and elevation <15 m. This soil landscape is often associated with wind erosion, ground water pollution and foundation (localised swamps) hazards, permanent high water tables (localised swampy depressions), seasonal waterlogging (localised low-lying swales) and acid soils.
	We note that the Sand Dune is underlain by Variant-a of the Shoal Bay soil landscape consisting of steeper slopes and higher relief, however, soils are similar to the Shoal Bay soil landscape.
Existing Site Features	Site mainly consists of:
	 Bushland / forest with some cleared grassed areas and market gardens in the northern and central portions of the Site.
	 Scattered infrastructure including residential dwellings, garages and sheds predominantly in the southern portion.
	Cleared farm tracks for site access.
Drainage	The northern and central portion of the Site (to the north of the Sand Dune) drains via a network of man made drainage channels to the east-west aligned Anna Bay main drain.

Item	Description / Comment
	The portion of the Site to the south of the Sand Dune generally drains via overland flow to a trapped low point on 293 Gan Gan Road.
Neighbouring environment	The Site is bordered by Gan Gan Road and Old Main Road to the south, with rural land and low density residential developments to the east, north and west.

2.2 Subsurface Conditions

Based on the variations in subsurface conditions identified from the investigations, the Site has been divided into three generalised zones (refer to Map 06, Appendix A for zone extents), underlying by the following generalised subsurface units:

1. Zone A, the portion of the Site to the south of the Sand Dune:

<u>Unit A:</u> Marine / aeolian sand / silty sand, generally loose to medium dense, encountered up to approximately 5.5 mbgl.

<u>Unit B:</u> Marine sand / silty sand, typically medium dense grading to dense, encountered below Unit A up to investigation termination depth of 10.47 mbgl.

2. Zone B, the Sand Dune, underlain by well-drained Pleistocene aeolian sand:

Marine / aeolian sand / silty sand, varying typically between very loose and medium dense, with some dense layers, encountered up to investigation termination depth of 22.0 mbgl.

3. Zone C, the majority of the Site, to the north of the Sand Dune, underlain by estuarine swamp deposits comprising silt and clay:

Unit A: Marine silty clay / silt, typically organic and very soft to firm (with interbedded loose sand at some locations), encountered in places up to between approximately 2.0 mbgl and 4.75 mbgl. Where encountered, Unit A is typically 2 m to 4 m thick, though the soft clay layer thickness encountered across the southern portion (along the northern toe of the Sand Dune) as well as the far north eastern and north western portions of Zone C, is typically less than 2 m.

<u>Unit B:</u> Marine sand / silty sand, typically medium dense grading to dense, encountered in some places beneath Unit A and to investigation termination depths of up to 15.95 mbgl.

We note that a thin (up to \approx 0.2 m) topsoil layer comprising organic sand / silty sand overlies Unit A in some locations of the Site.

CPT refusal is inferred to have occurred due to the presence of dense cemented sand (i.e. Waterloo rock) at CPT termination depth.

Encountered conditions are described in more detail on the borehole logs in Appendix C. Associated explanatory notes are provided in Appendix J. For DCP and CPT test results refer to Appendix D and Appendix E, respectively. Geotechnical investigation locations are shown on Map 07 to Map 10, Attachment A.

2.3 Groundwater

2.3.1 Monitoring Well Installation

Thirteen groundwater monitoring wells (MWs) were installed across the Site. A summary of MW construction is documented in the Preliminary Hydrogeological Assessment report prepared by MA (P2208888JR10V01, dated December, 2024). Details of MW construction are provided on the borehole logs in Appendix C.

2.3.2 Borehole Observations

Groundwater inflow was encountered during drilling of all boreholes except BH101, BH102, BH104 to BH107, BH110 to BH114 and BH134. A summary of these groundwater inflow levels and levels identified in the CPT results is provided in Table 3.

 Table 3: Summary of groundwater inflow levels in boreholes and groundwater levels identified in CPT results.

Location	Surface Level (mAHD)	Depth of Groundwater Inflow (mbgl)	Groundwater Inflow Level (mAHD)	Date
BH103	4.0 ¹	0.9	3.1	13/09/2022
BH115	1.2 1	1.0	0.2	07/02/2023
BH116	0.69 ¹	3.0	-2.31	07/02/2023
BH117	0.60 ¹	1.5	-0.9	07/02/2023
BH118	0.73 ¹	1.5	-0.77	07/02/2023
BH119	0.80 1	2.0	-1.2	07/02/2023
BH120	0.80 ¹	1.0	-0.2	07/02/2023
BH121	0.98 ¹	1.5	-0.52	08/02/2023
BH122	0.50 ¹	1.5	-1.0	08/02/2023
BH123	0.80 1	1.0	-0.2	08/02/2023
BH124	1.14 ¹	1.9	-0.76	08/02/2023
BH125	0.90 ¹	1.0	-0.1	08/02/2023
BH126	0.94 ¹	1.0	-0.06	08/02/2023
BH127	0.90 ¹	1.5	-0.60	08/02/2023
BH128	0.90 ¹	1.0	-0.1	08/02/2023
BH129	0.84 1	1.5	-0.66	08/02/2023
BH133	0.62 ¹	2.3	-1.68	12/04/2024
BH135	0.78 ¹	0.80	-0.02	12/04/2024
BH136	0.84 1	1.2	-0.36	12/04/2024
BH137	0.76 ¹	0.70	0.06	12/04/2024
BH138	0.78 ¹	0.80	-0.02	12/04/2024
CPT101	4.4 ¹	2.5	1.9	14/09/2022
CPT102	14.5 ¹	11.0	3.5	14/09/2022
CPT103	23.8 ²	18.0	5.8	14/09/2022
CPT104	1.9 ¹	0.40	1.5	14/09/2022
CPT105	5.9 ¹	1.7	4.2	15/09/2022

Location	Surface Level (mAHD)	Depth of Groundwater Inflow (mbgl)	Groundwater Inflow Level (mAHD)	Date
CPT106	1.8 1	0.40	1.4	15/09/2022
CPT107	19.5 ²	11.0	8.50	15/09/2022
CPT108	17.3 ¹	15.0	2.3	15/09/2022
CPT109	18.0 ²	10.0	8.00	15/09/2022
CPT110	2.0 1	0.0	2.0	15/09/2022

Notes:

- 1. Surface level estimated from TSS (2023a).
- 2. Surface level estimated from TSS (2023b).
- 3. Surface level surveyed by TSS (2023c).
- 4. Surface level estimated from TSS (2024).

2.3.3 Monitoring Well Installation

Continuous monitoring of MWs was completed from 7 December 2022 to 27 November 2024. Details of the monitoring, monitoring results and assessment findings are provided in MA (MA, 2024b). However, for convenience, the continuous data logger statistics are summarised in Table 4.

Table 4: Summary of groundwater level statistics from continuous monitoring.

Location	Surface Level	Groun	Dange (m)		
Location	(mAHD) ¹	Minimum	Mean	Maximum	Range (m)
MW01	4.31	4.00 / 0.31	3.30 / 1.01	2.21 / 2.10	1.79
MW02	1.74	1.57 / 0.17	0.93 / 0.81	0.42 / 1.32	1.15
MW04	2.17	1.90 / 0.27	1.16 / 1.01	0.54 / 1.63	1.36
MW05	1.85	1.80 / 0.05	1.00 / 0.85	0.18 / 1.67	1.62
MW08	0.69	1.01 / - 0.32	0.39 / 0.30	0.34 ² / 1.03	1.35
MW09	0.73	0.78 / - 0.05	0.27 / 0.46	0.32 ² / 1.05	1.10
MW10	0.98	0.99 / -0.01	0.45 / 0.53	0.14 ² / 1.12	1.13
MW11	1.14	0.85 / 0.29	0.24 / 0.90	0.34 ² / 1.48	1.19
MW12	0.94	1.18 / - 0.24	0.52 / 0.42	0.10 ² / 1.04	1.28
MW13	0.84	1.02 / - 0.18	0.45 / 0.39	0.21 ² / 1.05	1.23

Notes:

- 1. Surface level surveyed by TSS (2023c).
- 2. Water level above ground surface.

2.3.4 Comments

The groundwater monitoring results indicate the following:

- Groundwater responds relatively rapidly to incident rainfall, which can cause groundwater to rise rapidly as water infiltrates the ground within the local area. We note that several significant rainfall events occurred over the monitoring period, particularly between mid March and mid April 2023 and 2024.
- Mean groundwater levels were generally reflective of surface topography, tending to be shallow (≈ 0.3 mbgl) in low-lying areas to the north of the Sand Dune and deeper

- in the southern portion of the Site (to the south of Sand Dune), ranging typically between 2.2 m to 4.0 mbgl (0.3 to 2.2 mAHD).
- 3. Proposed cut for lot development (in the southeastern portion of the Site) is unlikely to intercept the permanent groundwater table.
- 4. Proposed cut for the channel widening and basins will likely intercept the permanent groundwater table. However, channel widening and basin construction is expected to be undertaken without the need for mechanical dewatering (i.e. pumping to draw down water levels). As a result, the altered channel and the basin are note expected to adversely affect current groundwater levels.
- 5. The proposed residential subdivision is not expected to adversely impact (i.e. lower) the groundwater table on the Site or on adjacent land.

3 Acid Sulfate Soil (ASS) Assessment

3.1 Guidelines

This ASS assessment was undertaken in general accordance with the following guidelines:

- Acid Sulfate Soil Management Advisory Committee (1998), Acid Sulfate Soil Manual, referred to as ASSMAC (1998).
- 2. Qld Natural Resources, Mines and Energy (2004) Acid Sulfate Soil Laboratory Methods Guidelines.

3.2 Acid Sulfate Soil Risk Map Classification

The Port Stephens Local Environmental Plan 2013 (Port Stephens LEP, 2013) ASS planning map indicates that the majority of the Site is Class 3 land, with a small portion in the south of the Site, along Gan Gan Road (including the Sand Dune), mapped as Class 4 land (refer to Map 05). ASSMAC (1998) indicates that works on Class 3 land have the potential to pose an environmental risk, if works extend 1 m below the natural ground surface and are likely to lower the water table more than 1 m below the natural ground surface. Therefore, a preliminary geomorphic ASS assessment was undertaken.

3.3 Geomorphic Setting

The likelihood of ASS occurrence at a site is a function of various geomorphic parameters, in particular those listed in Table 5 as derived from ASSMAC (1998). Each is an indicator that ASS may be present onsite.

Table 5: Site geomorphic features indicative of ASS.

Geomorphic Feature	Present On Site?
Holocene sediments.	Yes
Soil horizons less than 5 mAHD.	Yes
Marine / estuarine sediments or tidal lakes.	Yes
Coastal wetland; backwater swamps; waterlogged or scalded areas; inter-dune swales or coastal sand dunes (i.e. deep excavation is required).	Yes
Dominant vegetation is mangroves, reeds, rushes and other swamp or marine tolerant species.	No
Geologies containing sulfide bearing material / coal deposits or former marine shales / sediments.	Yes
Deep older (Holocene or Pleistocene) estuarine sediments > 10 mbgl (if deep excavation or drainage is proposed).	Likely

Most of the geomorphic features listed are present at the Site. Therefore, the geomorphic setting indicates that ASS is likely to be present and intrusive investigation, with laboratory testing of soils, should be carried out at the Site.

3.4 Field Testing and Action Criteria

A total of fifty one (51) soil samples were selected to assess the field pH (pH $_{\text{F}}$) and oxidised pH (pH $_{\text{OX}}$) of site soils. Seventy seven (77) soil samples were selected for ASS analysis using the chromium reducible sulfur (S $_{\text{CR}}$) method.

Field and oxidised pH results were assessed against the following criteria adopted from the ASSMAC (1998):

- pH_F < 4.0 is indicative of actual acid sulfate soils (AASS); and
- pH_{OX} < 3.5 is indicative of potential acid sulfate soils (PASS).

We understand that future development works will involve the disturbance of greater than 1,000 tonnes of soil material. Based on this, S_{CR} results were assessed against the following action criteria adopted from Table 4.4 of ASSMAC (1998):

- Net acidity (sulfur units) > 0.03%; and
- Net acidity (acid units) >18 mol H+/tonne.

Exceedance of these criteria indicates that a further investigation and detailed ASS management plan may be required for the Site.

3.5 Soil Analytical Results

Samples were collected during the geotechnical investigations and groundwater installation works, from solid flight augers (generally for shallow boreholes) and from hollow flight augers and SPT sampling (for deeper boreholes).

A total of seventy seven soil samples taken from BH101 - BH107, BH110 - BH129 and BH133 - BH138 (excluding BH102, BH105, BH107 to BH109 and BH114) were submitted to Envirolab Services for pH screening (pHf and pHfox) and S_{CR} analysis. Samples were taken from fill and natural soil samples at various depths across the Site.

Field and oxidised pH results and S_{CR} results are summarised in Table 6 below. Bolded values indicate exceedances of ASSMAC (1998) action criteria. Detailed tabulated results are provided in Appendix E with the complete laboratory report provided as Appendix F.

Table 6: Laboratory field screening result summary.

Borehole ID	Sample Depth (mbgl)	Material type	pH⊧	рН _{ғох}	Net Acidity (sulfur units, %S)	Net Acidity (acidity units, mol H ⁺ /t)	Liming Rate (kg/t)
DUMOA	0.5	Sand and trace silt	5.3	2.3	<0.005	5.3	<0.75
BH101	2.5	Sand and trace silt	5.4	3.4	<0.005	7.1	<0.75
	0.5	Sand and trace silt	5.3	2.2	<0.005	25	2
BH103	1.0	Sand and trace silt	4.6	2.1	<0.005	63	5
BH103	2.5	Sand and trace silt	5.0	2.0	0.05	46	3
	4.0	Sand and trace silt	5.1	2.7	<0.005	14	1
	0.5	Sand and trace silt	5.3	2.5	<0.005	5.8	<0.75
DUMOA	1.5	Sand and trace silt	5.6	3.7	<0.005	13	1
BH104	2.5	Sand and trace silt	5.7	3.8	<0.005	5.6	<0.75
	4.0	Sand and trace silt	5.8	3.9	<0.005	8.6	<0.75
DILLOG	0.2	Sand with silt	5.5	2.9	0.005	10	0.8
BH106	1.2	Sandy Silt	5.5	3.2	0.005	15	1
DUMAG	0.5	Sand with silt	5.7	3.3	<0.005	7.1	<0.75
BH110	1.5	Silt and trace sand	5.5	3.7	<0.005	33	2
BH111	0.5	Sand and trace silt	5.9	3.8	<0.005	<5	<0.75

Borehole ID	Sample Depth (mbgl)	Material type	pH₅	рН _{ғох}	Net Acidity (sulfur units, %S)	Net Acidity (acidity units, mol H*/t)	Liming Rate (kg/t)
	1.5	Sand	6.4	3.6	<0.005	<5	<0.75
	2.8	Sand	6.6	2.4	<0.005	<5	<0.75
	4.4	Sand	6.6	2.6	<0.005	<5	<0.75
BH112	1.0	Sand with silt	5.5	3.7	<0.005	<5	1
БППZ	2.0	Sand with silt	4.9	3.4	0.04	48	4
DUMAG	0.3	Sand	6.1	4.7	0.005	5.6	<0.75
BH113	1.0	Sand	6.1	4.8	<0.005	12	0.9
D1111	0.1	Silty Sand	4.7	2.0	0.03	270	20
BH115	3.3	Clayey Sand	4.7	1.9	0.08	76	6
D11110	1.0	Sandy Clay	4.7	1.8	0.07	82	6
BH116	2.5	Sandy Clay	5.5	1.8	0.15	130	9.6
	0.5	Silty Clay	4.8	1.9	0.01	180	14
BH117	1.5	Silty Clay	5.1	1.6	0.14	160	12
	0.5	Silty Clay	4.6	2.4	0.09	240	18
BH118	3.5	Clayey Sand	5.2	2.5	0.30	220	17
	1.0	Silty Clay	4.5	1.7	0.22	200	15
BH119	2.0	Silty Clay	7.0	2.2	0.17	<5	<0.75
	0.5	Silty Clay	4.3	1.9	<0.005	120	9
BH120	1.5	Silty Clay	4.7	2.7	0.99	740	56
	0.2	Silty Clay	4.2	1.8	0.02	260	19
BH121	1.5	Sandy Clay	4.4	1.8	0.24	210	16
	1.0	Silty Clay	6.0	1.9	0.59	490	37
BH122	3.5	Clayey Sand	6.2	2.4	0.05	35	3
	0.5	Silty Clay	5.7	2.0	0.54	370	28
BH123	1.5	Silty Clay	6.2	1.9	0.30	200	15
	1.5	Silty Clay	4.9	1.8	0.25	220	16
BH124	3.5	Clayey Sand	5.4	3.2	0.006	9.8	<0.75
	0.2	Silty Clay	4.6	2.2	0.01	72	5
BH125	1.5	Silty Sand	5.2	1.9	0.01	29	2
	1.5	Silty Sand	4.5	2.5	0.03	73	5
BH126	3.0	Silty Sand with clay	4.8	2.1	0.06	52	4
	1.0	Sandy Clay	5.0	2.3	0.04	59	4
BH127	2.5	Silty Sand	5.2	1.9	0.06	48	4
	0.5	Silty Sand	5.1	2.4	0.007	37	3
BH128	1.5	Clayey Sand	4.3	2.6	0.15	140	10
BH129	0.5	Silty Clay	4.5	3.2	0.10	200	15
BH133	0.4-0.5	Sandy Clay	-	-	0.35	180	14.00

Borehole ID	Sample Depth (mbgl)	Material type	pH₅	рН _{ғох}	Net Acidity (sulfur units, %S)	Net Acidity (acidity units, mol H ⁺ /t)	Liming Rate (kg/t)
	1.4-1.5	Silty Sandy Clay	-	-	0.37	220	17.00
	2.5-2.6	Clayey Sand	-	-	0.15	96	7.20
	3.5-3.6	Clayey Sand	-	-	0.11	71	5.30
BH134	0.4-0.5	Sandy Clay	-	-	0.21	110	8.50
	0.9-1.0	Silty Clay	-	-	0.27	160	12.00
	2.0-2.1	Clayey Sand	-	-	0.15	92	6.90
	2.4-2.5	Silty Clay	-	-	<0.005	<5	17.00
	3.0-3.1	Silty Clay	-	-	0.082	51	17.00
BH135	0.4-0.5	Clayey Sand	-	-	0.3	170	13.00
	0.9-1.0	Sandy Silty Clay	-	-	0.35	200	15.00
	1.9-2.0	Sandy Silty Clay	-	-	0.56	340	25.00
	2.4-2.5	Clayey Sand	-	-	0.32	200	15.00
	3.4-3.5	Clayey Sand	-	-	0.3	190	14.00
BH136	0.9-1.0	Silty Sandy Clay	-	-	0.21	120	9.30
	1.5-1.6	Clayey Sand	-	-	0.17	110	7.90
	2.0-2.1	Clayey Sand	-	-	0.18	110	8.50
	3.0-3.1	Clayey Sand	-	-	0.016	10	0.75
BH137	0.4-0.5	Silty Clay	-	-	0.2	120	9.20
	1.5-1.6	Silty Clay	-	-	0.55	340	26.00
	2.5-2.6	Clayey Sand	-	-	0.3	190	14.00
	3.5-3.6	Clayey Sand	-	-	0.39	250	18.00
BH138	0.9-1.0	Silty Sandy Clay	-	-	0.14	87	6.50
	2.0-2.1	Clayey Sand	-	-	0.036	22	1.70
	3.0-3.1	Clayey Sand	-	-	0.15	91	6.90
	3.9-4.0	Clayey Sand	-	-	0.008	<5	<0.75

3.6 Results

The findings of this preliminary ASS assessment are summarised as follows:

- No samples returned pH_F values < 4.
- 42 out of 51 samples returned pH_{OX} values < 3.5, indicative of PASS.
- 57 out of 77 samples from 29 borehole locations exceeded the ASSMAC (1998) action criteria for either net acidity in sulfur units and in S_{CR} (% w/w) (all of these having pH_{OX} values < 3.5). These samples are considered to be potential acid sulfate soils (PASS) that have further acid generating potential associated with them.

- Samples considered PASS were from soils north of the Sand Dune and were at depths ranging from near surface to > 3.0 mbgl.
- Sand Dune soils and soils to the south of the Sand Dune are not considered PASS.
- Indicative liming rates, to neutralise potential acidity for samples exceeding action criteria, range between 0.75 kg/t and 37 kg/t.
- Laboratory results for all samples analysed, apart from 4 samples, indicate that the alluvial soil profile has a negligible natural acid neutralising capacity (ANC) (0.25% CaCO₃ BH111/1.5; 0.75% CaCO₃ BH119/2.0; 2.1% CaCO₃ BH134/2.4-2.5 and 1.4% CaCO₃ BH134/3.0-3.1).

3.7 Discussion / Conclusion

Based on laboratory testing, there is widespread PASS present across the areas of the Site to the north of the Sand Dune. The Sand Dune and area south of the Sand Dune does not contain PASS or AASS.

Additional soil sampling and laboratory testing may need to be completed at the development application (DA) stage to meet the requirements of ASSMAC (1998) in areas of proposed cut (or should any temporary dewatering be carried out). In addition to this, a detailed ASSMP will be required at the DA stage to support the management of ASS as part of any future development works.

The presence of PASS within the Site is expected to be appropriately managed during construction stage, subject to the above additional works being undertaken.

Proposed cut for the channel widening and basin(s) construction may intercept the permanent groundwater table at the Site. However, as excavation works are expected to be completed without mechanical dewatering, these works and the proposed residential subdivision in general are unlikely to adversely impact (i.e. lower) the groundwater table at the Site and neighbouring lands. If, however, any future dewatering works (either temporary or long term) are proposed as part of future development works, they will require a detailed assessment of the impact of dewatering on Site PASS soils and any neighbouring Class 1 – 4 mapped land.

4 ASS Hazards and Risk Assessment

4.1 Overview

Potential hazards associated with ASS and assessed risk as a result of the residential subdivision is discussed in the following sections.

4.2 Potential Hazards

The following potential hazards are noted with regards to ASS:

- Unmanaged PASS material being exposed to air and acidifying following excavation works.
- 2. Groundwater level changes as a result of drainage modification works (basins and channel widening) potentially impacting groundwater and surface water quality.
- 3. Construction of dwelling footings being impacted by ASS.

These hazards shall be managed to result in a low risk via the mitigation measures provided in the following sections:

4.3 Risk Mitigation Measures

4.3.1 PASS Material Risk Management

The presence of excavated PASS materials within the Site shall be appropriately managed in accordance with ASSMAC (1998) during construction by implementing an ASSMP and the recommendations presented in this report. The ASSMP may comprise, but not be limited to, the following steps:

- i. <u>Undertake baseline water monitoring prior to works:</u> this should include both surface and groundwater monitoring, upstream and downstream of potential impact areas. Monitoring should be completed a minimum 6 months prior to earthworks commencing.
- ii. <u>Setup of a treatment area for treatment of PASS.</u> This area should be adequately barricaded and marked with appropriate signage and may include the following:
 - An impermeable liner or pad (e.g. impervious clay or concrete pad) to prevent leachate contaminating underlying soil.
 - Be surrounded by an earthen bund to redirect stormwater runoff around the material stockpile and retain leachate inside the bund.
 - A leachate collection settlement sump to collect runoff and leachate.
 - Be graded towards the leachate sump for efficient drainage.
- iii. <u>Stockpile excavated PASS material in the treatment area</u>. The stockpiles are to be covered, with the cover extending over the bund crest to redirect rainwater runoff away from the stockpiles. Stockpiling may be completed in a staged manner.
- iv. <u>Treatment of PASS</u>: All disturbed PASS material is to be treated with agricultural lime at appropriate liming rates based on laboratory test results. A lime register should be maintained by the contractor to record the amount of lime delivered to the Site.

- v. <u>Treatment of leachate or acidic groundwater (with PH < 6.5):</u> Leachate or acidic groundwater collected from bunded stockpiles of untreated soil is to be neutralised with hydrated lime mixed into a slurry before adding water and tested to ensure suitability for disposal into the nearest receptor. Stringent containment measures and monitoring schedules shall be implemented to limit adverse impacts of the hydrated lime on health and safety and the environment.
- vi. <u>Validation</u>: Validation of appropriate treatment is to be completed and documented, including:
 - Excavated soil volume, including total material and acidic soil.
 - Photographic evidence of lime treatment and soil stockpile bunding and cover.
 - Details of leachate tests, test results and test certificates.
 - Calculated liming rates for acidic soil and leachate treatment.
 - Waste classifications for spoil removed from the Site.

Material can be reused for bulk filling works on the Site following validation.

vii. <u>Certification:</u> Following completion of the treatment process, a report is to be prepared by a suitably qualified person demonstrating that the requirements of this management plan have been met.

The application of an ASSMP shall result in a low risk to environmental receptors as a result of PASS disturbance during construction works.

4.3.2 Groundwater Risk Management

Proposed development activities as listed in Section Error! Reference source not found. (in particular shallow excavation for channel widening and basin construction) may intercept the groundwater tables.

To minimise impacts on the groundwater level changes, we recommend the following:

- Works should be completed using conventional earthmoving equipment (e.g., small-medium excavators with mud buckets).
- No mechanised dewatering (i.e. pumping) to be undertaken as part of the construction works.
- iii. Where saturated material is excavated from below the groundwater table, soil is to be adequately drained of free water (into the channel / basins) prior to stockpiling for required treatment. Any residual leachate from stockpiled material will be appropriately collected, treated and validated prior to discharge back to the channel / basin. These works shall be documented in detail in the future ASSMP.

If the above works are implemented, risk associated with disturbance of the groundwater table is expected to be low and acceptable. This should be confirmed at DA stage through further groundwater monitoring and modelling as the development design is refined.

4.3.3 Dwelling Construction Risk Management

Risks to dwelling construction (footings / foundations) and buried concrete structures as a result of ASS on the Site shall be managed by:

- 1. Completing appropriate soil testing following subdivision completion to confirm soil aggressiveness in accordance with AS3600 and AS2159.
- 2. Design of footings to be completed by registered engineer with consideration of the soil testing noted above.
- 3. Provision of community education resources by the developer for new home purchasers at the point of contract for sale of the land.

4.4 Conclusion

The proposed residential subdivision is likely to result in negligible impacts on the existing groundwater system and pose minimal environmental risk as a result of ASS, subject to implementation of an ASSMP and recommendations presented in this report.

5 Geotechnical Assessment

5.1 Laboratory Testing

Laboratory testing carried out by Resource Laboratories, a NATA accredited laboratory, for the geotechnical assessment, included:

- 1. Particle size distribution (PSD) testing on sixteen soil samples.
- 2. Atterberg limits testing on five soil samples.

Laboratory test certificates are provided in Appendix G.

5.1.1 Particle Size Distribution (PSD) Results

Laboratory PSD test results are summarised in Table 7 (refer to Appendix G for PSD test certificate).

Table 7: Summary of laboratory PSD test results.

Sample ID	% Gravel ¹	% Sand	% Silt and Clay
BH101 / 1.0	0	93	7
BH102 / 1.0	0	98	2
BH114 / 1.0	0	98	2
BH119 / 2.1	0	96	4
BH124 / 1.6	0	97	3
BH126 / 1.4	0	97	3
BH127 / 1.6	0	96	4
BH128 / 0.5	0	92	8
BH130 / 0.4-0.8	9	72	19
BH131 / 0-0.5	0	94	6

Notes:

- 1. Borehole # / sample depth.
- 2. % Gravel summary includes all material greater than 2.36 mm sieve size.

5.1.2 Atterberg Limits Testing

Laboratory Atterberg limits test results are summarised in Table 8 (refer to Attachment D for test certificate).

Table 8: Summary of laboratory Atterberg limits test results.

Comple ID 1	Meterial	Atterberg Limits (%)			Plasticity	Potential Volume	
Sample ID ¹	Material	LL ²	PL ²	PI ²	Classification	Change ³	
BH115 / 1.0	Silty CLAY	86	33	53	High	High	
BH118 / 1.5	Silty CLAY	94	40	54	High	High	
BH119 / 0.5	Silty CLAY, with sand	50	22	28	Medium to high	Medium	
BH122 / 0.5	Silty CLAY	88	38	50	High	High	

Comple ID 1	Material	Atterberg Limits (%)			Plasticity	Potential Volume	
Sample ID ¹	Materiai	LL ²	PL ²	PI ²	Classification	Change ³	
BH122 / 1.5	BH122 / 1.5 Silty CLAY		33	55	High	High	

Notes:

- 1. Borehole#/Depth (mbgl).
- 2. LL = Liquid limit, PL= Plastic limit, PI=Plasticity index.
- 3. Based on Hazelton and Murphy, 2016.

Laboratory test results indicate that the tested marine soil samples are generally of high plasticity, which may induce significant ground movements as a result of soil volume changes due to soil moisture variations.

5.2 Risk of Slope Instability

5.2.1 Site Observations

Observations during the various site inspections revealed:

- 1. The Site generally has grades of less than approximately 5 %. Some areas along the southeastern portion of the Site, immediately adjacent to the toe of the Sand Dune, have grades of between approximately 10 % and 20 %.
- 2. The south and north facing batters of the Sand Dune are estimated to have an average grade of between approximately 20 % and 30 % (i.e. < 18 °).
- 3. No evidence of former or current slope movement (landslip), e.g. soil creep, leaning trees and hummocky ground, was observed across the Site.
- 4. Shallow (1 m to 1.5 m high) toe cutting was observed at a number of locations along the alignment of the Sand Dune.

5.2.2 Sand Dune Stability

Three CPTs (CPT103, CPT107 and CPT109) were undertaken near the crest of the Sand Dune. CPT investigation revealed that the subsurface material underlying the Sand Dune generally comprised medium dense sand / silty sand grading to dense sand up to investigation termination depth of 20.04 mbgl. Based on the likely subsurface conditions, the natural angle of repose of the Sand Dune material is expected to be > 32°. However, loose sand with natural angle of repose as low as 28° may be encountered at some locations, particularly along the toe of the dune.

5.2.3 Preliminary Slope Instability Discussion

Considering the assessed geotechnical conditions at the Site, the risk of land-sliding as a result of the proposed development or risk of slope instability impacting the proposed development is expected to be low subject to the recommendations presented in this report and adoption of relevant Australian Standards and industry guidelines.

5.3 Geotechnical Constraints

The proposed development is inferred to be impacted by the following key geotechnical constraints:

 Loose aeolian sand encountered at some locations across Zone A may settle under loading, such as building loads or loads from plant and machinery during

construction. Loose aeolian sand is also susceptible to liquefaction, where below the water table, particularly during a significant seismic event.

- Thick (> 4 m) soft to firm clay, encountered in the upper soil profile across Zone C, is susceptible to consolidation settlement in the long term. This may result in damage of new structures / infrastructures as well as slope instability during construction (filling to earthworks platform level).
- Requirement for ground improvement across areas where structures and services will adversely be affected by settlement.
- Groundwater across Zone C is expected to be shallow and variable due to weather and seasonal changes, which may impact vehicle trafficability during construction.
- Presence of PASS within the subsurface profile and shallow groundwater levels in areas north of the Sand Dune may impact construction methodologies for the proposed residential subdivision, including a requirement for appropriate ASS management strategies, if disturbed during construction.

6 Geotechnical Recommendations

6.1 Overview

Preliminary geotechnical recommendations related to the future residential subdivision are provided below. General geotechnical recommendations are provided in Appendix H.

6.2 The Sand Dune

Consideration should be given to good hillslope engineering practices for future construction in close proximity of the steep batter of the Sand Dune (Zone B) to minimise risk of slope instability. A description of good hillslope engineering practices is provided as Attachment G.

6.3 Site Preparation and Earthworks

6.3.1 General Recommendations

All earthworks are to be undertaken in accordance with the guidelines for earthworks for commercial and residential developments as set out in AS 3798 (2007). In addition, we recommend carrying out the following site preparation and earthworks:

- Prior to any filling works, remove any unsuitable materials such as topsoils and root affected soils and compact to achieve a suitable subgrade for fill placement and foundation for future structures / infrastructure.
- 2. All excavated material should be stockpiled and undergo formal waste classification and / or appropriate treatment in accordance with ASS management plan (where necessary). Any material that is to be taken off site should be classified in accordance with NSW EPA (2014) Waste Classification Guidelines prior to offsite disposal to a suitable location in accordance with NSW Waste Classification Guidelines.
- 3. Exposed subgrade is to be proof rolled using a suitable smooth drum roller with required passes to achieve required compaction. A qualified geotechnical engineer should inspect the condition of the exposed subgrade during proof roll, to assess suitability of the subgrade for fill placement or as foundation for new structures / infrastructure or to identify localised soft spots requiring ground improvement.
- 4. Fill material should be placed in horizontal layers, generally not less than 100 mm and not more than 300 mm in loose thickness, and compacted, in accordance with AS3798 (2007).
- 5. Fill material should comprise well graded granular material. Site won excavated marine and aeolian sands may be reused for filling, however, some treatment (e.g. mixing with cement or with coarser / finer sands) may be required to achieve material grading requirements typically associated with 'engineered fill' specifications. Alternatively, well graded granular fill may be imported, subject to approval by the project geotechnical engineer.
- 6. Fill batters should not exceed a grade of 1V:3H.
- 7. Fill is to be placed in maximum lifts of 1 m at each stage. Consideration should be given to minimise slope instability risk during filling.
- 8. Contractor should submit their earthworks construction methodology to a senior geotechnical engineer for review and approval.

9. All earthworks and compliance testing should be carried out under Level 1: Inspection and Testing as defined in Section 8 of AS3798 (2007) and in accordance with Council's requirements, under guidance of an experienced geotechnical engineer.

6.3.2 Ground Treatment for Filling over Soft Soils

In order to accelerate the primary consolidation settlement of the soft to firm alluvial clay within the soil profile across Zone C, the following ground treatment methods are recommended:

- Ground improvement by preloading: Surcharge in the form of a fill platform constructed over the area to accelerate the consolidation process.
- Ground improvement by installing prefabricated vertical drains (PVD): In areas underlain by deeper very soft to firm marine clays (> 2 m), we recommend installing prefabricated vertical drains (PVD). This may be carried out in conjunction with subsequent placement of surcharge over the area to accelerate the consolidation process. We note, however, that this would require deep excavations and management of excavated PASS.

Alternative ground improvement methods may be developed, subject to further guidance during development of such alternative methods and approval by an experienced geotechnical engineer.

We note that considerable consolidation settlement of very soft to soft marine clay is expected to occur where new fill thicknesses exceed 0.5 m . Depending on the soil properties, thickness of very soft to firm clay and drainage characteristics, the time taken to achieve required degree of consolidation may typically range between 3 and 6 months. Further field investigations and laboratory testing on collected soil samples should be undertaken to evaluate the time required for achieving a target degree of consolidation.

6.3.3 Settlement Monitoring

Monitoring of primary consolidation settlement behaviour is typically undertaken during construction to compare actual against predicted settlements. Monitoring may be carried out by site surveying, with settlement plates and ground settlement markers installed on the ground surface.

6.4 Long Term Settlement Management

Following completion of preloading, some long-term settlement will continue to occur due to recompression and creep. However this is expected to be of considerably lower magnitude and occur at slow rates. This long-term settlement will likely induce differential settlement beneath building foundations and services because of varying ground conditions, such as thickness of very soft to firm clay. Consideration should be given to potential differential ground settlements in design of residences in accordance with AS 2870 (2011), road pavements, road drainage and the connection of buried services to residences.

6.5 Drainage Requirements

Appropriate surface and subsurface drainage should be provided, as necessary, to divert overland flows and potential perched groundwater away from excavations, foundations, underside of floor slabs and behind all shoring / retaining walls, and to limit ponding of water in excavations and near footings in clay subsoils. All site discharges should be passed through a filter material prior to release into Council approved discharge points.

6.6 Soil Erosion Control

Removal of soil overburden should be performed in a manner that reduces the risk of sedimentation occurring in the Council stormwater system and on neighbouring lands. All spoil on Site should be properly controlled by erosion control measures to prevent transportation of sediments offsite. Appropriate soil erosion control methods in accordance with Landcom (2004) shall be required.

Channel widening design should include appropriate bank erosion controls.

6.7 Site Classification

Zone A is currently classified as a 'Class A' site in accordance with AS 2870 (2011), for design of lightly loaded shallow footings founding on at least medium dense marine sand at least 0.5 m above maximum permanent groundwater levels.

Zone B and Zone C are classified as a 'Class P' site in accordance with AS 2870 (2011) due to presence of steep slopes, unsuitable (loose and / or very soft to firm) foundation soil and shallow groundwater levels.

Future residential lots across Zone C may be reclassified following ground treatment and placement of engineered fill material.

These site classifications are subject to the recommendations presented in this report, design of footings in accordance with the relevant Australian Standards and industry guidelines and footings unlikely being impacted by the presence of environments that could lead to exceptional foundation material movements, such as existing or future trees, or surface / subsurface water accumulation / variations.

6.8 Construction Considerations

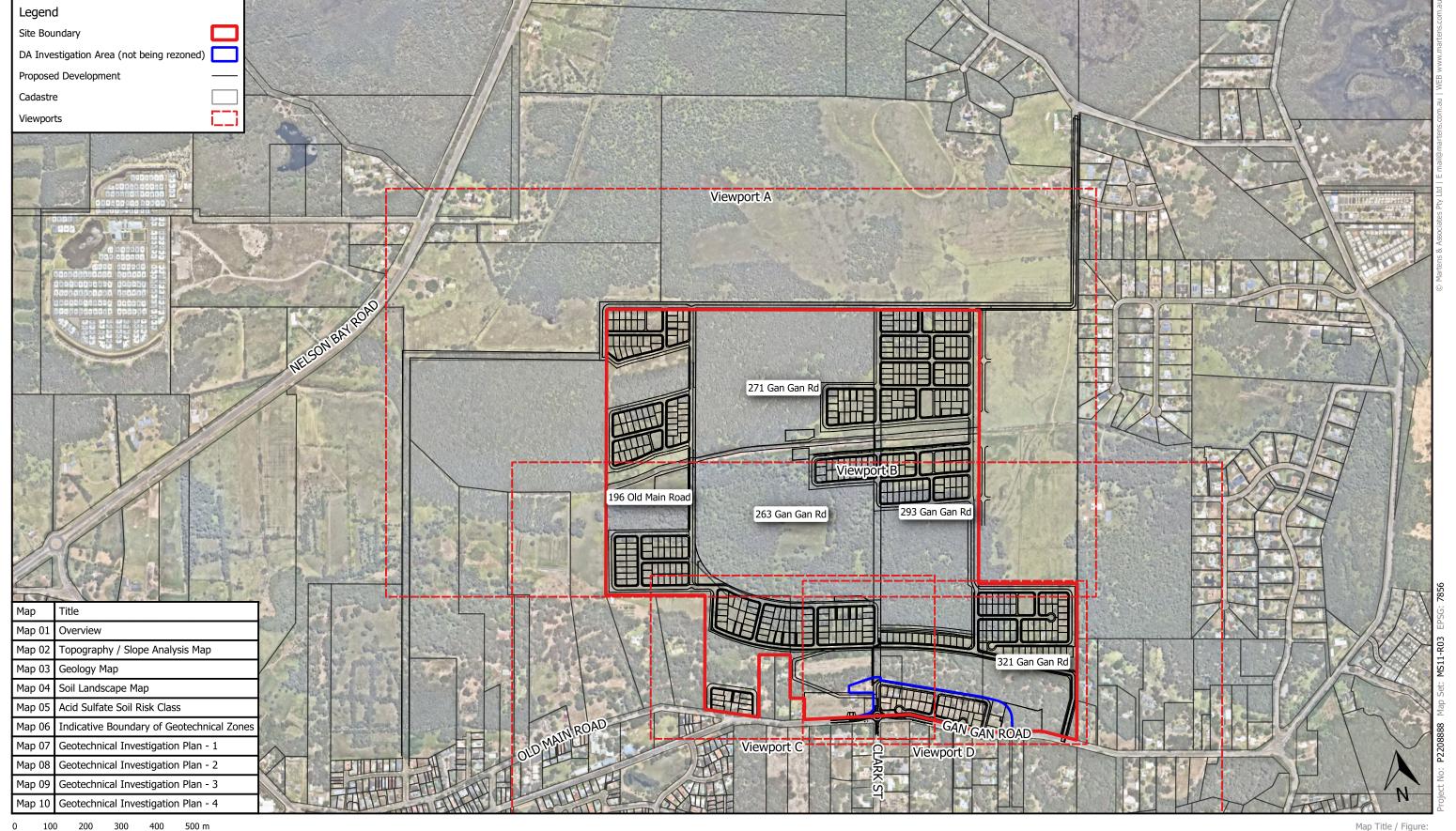
Owing to the presence of soft / loose surface materials across the Site, and shallow groundwater levels, ground improvement may be required to improve trafficability by construction plant and vehicles.

All excavations should be battered back at grades not exceeding 1V:2H for temporary batters and 1V:3H for permanent batters, or retained. Grades should be increased for batters below groundwater levels.

7 Proposed Additional Works

We recommend the following additional geotechnical assessments are carried out at the DA stage of development to further develop and support the final design:

- 1. Additional borehole investigations, soil sampling and laboratory testing, particularly across areas of the Site where a cutting is proposed, to better define ASS conditions and management requirements.
- 2. Preparation of a detailed ASSMP.
- Laboratory testing of soft to firm clayey soil present within the soil profile across Zone C for more accurate prediction of ground settlements under loading and the rate of consolidation.
- 4. CBR testing in pavement areas following completion of bulk cut and fill works.
- Additional geotechnical assessment, including laboratory testing, to better define geotechnical conditions and geotechnical hazards and provide appropriate advice with respect to final development proposals.
- 6. Review of final designs and construction methodologies by a senior geotechnical engineer to confirm adequate consideration of the geotechnical risks and adoption of the recommendations provided in this report.



8 References

- Ahern C R, Stone, Y, and Blunden B (1998) Acid Sulfate Soils Assessment Guidelines, published by the Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia (ASSMAC,1998).
- BKA Architecture (2024) *Master PLan*, Gan Gan Road, Anna Bay. Drawing Nos. A011 and A012, Revision A; A100 and A013, Revision B; A015, Revision C; Project No. 22011, dated 2 December 2024 (BKA, 2024).
- Douglas Partners Pty Ltd (2005) *Geotechnical Investigation*, document reference 31633C, dated 8 Auguste 2005 (DP, 2005).
- Martens and Associates Pty Ltd (2023) Geotechnical, Groundwater and Acid Sulfate Soil Assessment 263, 273, 293 and 321 Gan Gan Road, Anna Bay, NSW, document reference P2208888JR04V01, dated July 2023 (MA, 2023).
- Martens and Associates Pty Ltd (2024) Mapset P2208888MS16-R02, dated 13 December, 2024, (MA, 2024a).
- Martens and Associates Pty Ltd (2024) *Preliminary Hydrogeological Assessment for PP 196 Old Main Road; 263, 269, 271, 273, 293 & 321 Gan Gan Road, Anna Bay NSW,* document reference P2208888JR10V01, dated December 2024 (MA, 2024b).
- NSW Department of Environment & Heritage (2023) eSPADE, NSW soil and land information, www.environment.nsw.gov.au, accessed on 08.16.2023.
- NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying Waste.
- Qld Natural Resources, Mines and Energy (2004) Acid Sulfate Soils Laboratory Methods Guidelines.
- Rose G., Jones W. H. and Kennedy D. R. (1966) *Newcastle 1:250 000 Geological Sheet SI/56-02*, 1st edition, Geological Survey of New South Wales, Sydney.
- Standards Australia Limited (1997) AS 1289.6.3.2:1997, Determination of the penetration resistance of a soil 9kg dynamic cone penetrometer test, SAI Global Limited.
- Standards Australia Limited (2004) AS 1289.6.3.1:2004, Determination of the penetration resistance of a soil Standard penetration test (SPT), SAI Global Limited.
- Standards Australia Limited (2017) AS 1726:2017, Geotechnical site investigations, SAI Global Limited.
- Standards Australia Limited (2011) AS 2870:2011, Residential slabs and footings, SAI Global Limited.
- Standards Australia Limited (2007) AS 3798:2007, Guidelines on earthworks for commercial and residential developments, SAI Global Limited.
- Total Surveying Solutions (2023) *Survey Plan*, Plan no. 220984-3, Job no. 220984, Sheet nos. 1 to 5, dated 27 July 2023 (TSS, 2023a).
- Total Surveying Solutions (2023) *Survey Plan*, Drawing no. 220984-1, Revision no. C, Job no. 220984, Sheet nos. 1 to 5, dated 3 March 2023 (TSS, 2023b).
- Total Surveying Solutions (2022) *Monitoring Wells Survey Plan*, Plan no. 220984-5, Job no. 220984, Sheet no. 1 of 1, dated 15 March 2023 (TSS, 2023c).
- Total Surveying Solutions (2024) *Survey Plan*, Drawing no. 220984-7, Revision no. 5, Job no. 220984, Sheet nos. 1 and 2, dated 9 September 2024 (TSS, 2024).

Appendix A - Maps

Map Title / Figure:

Overview

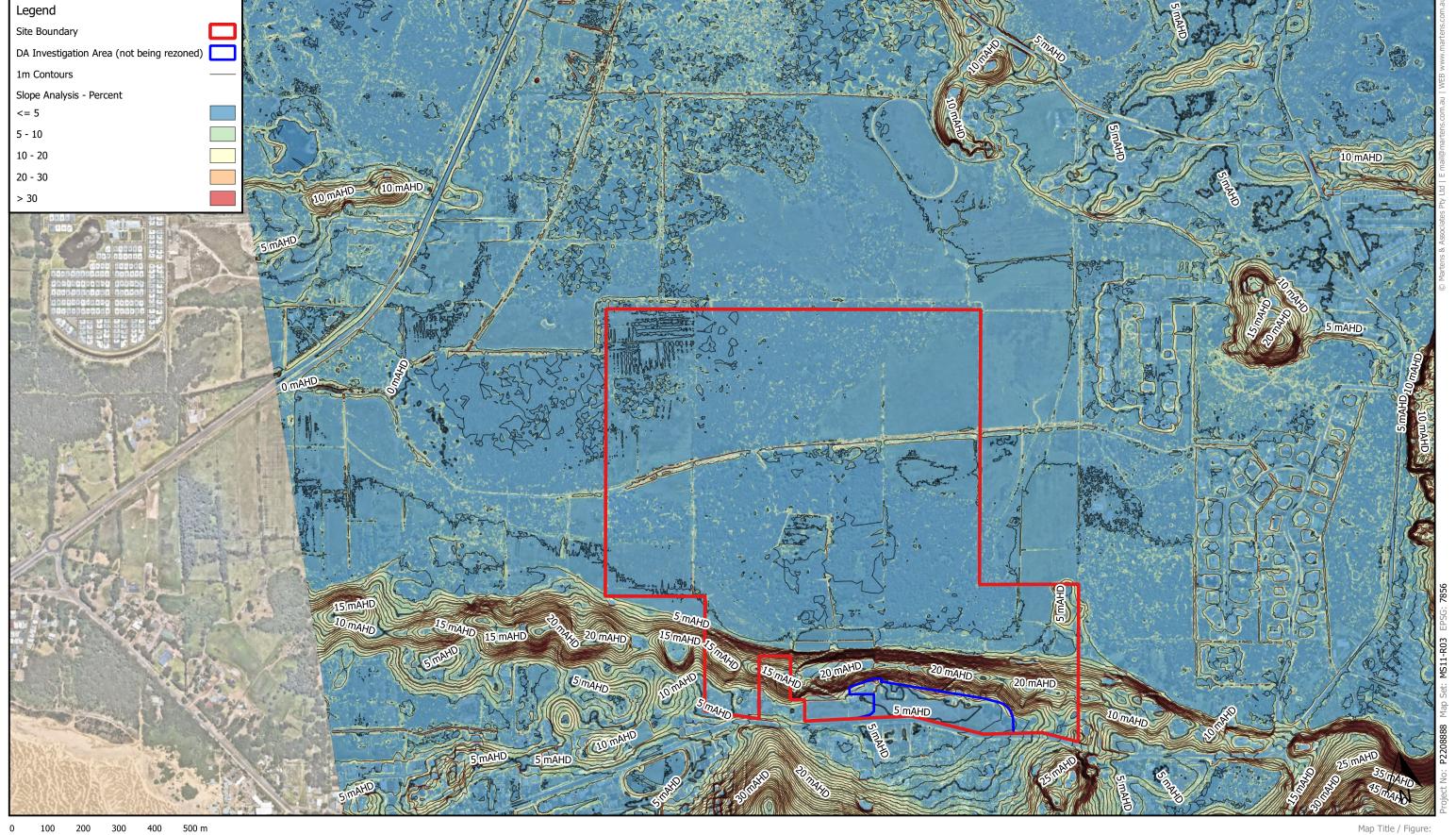
Viewport

1:10000 @ A3

Note: - Aerial from Nearmap (2022).

martens Environment | Water | Geotechnics | Civil | Projects

Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning Geotechnical and Acid Sulfate Soil Assessment


AB Rise Pty Ltd 04/12/2024

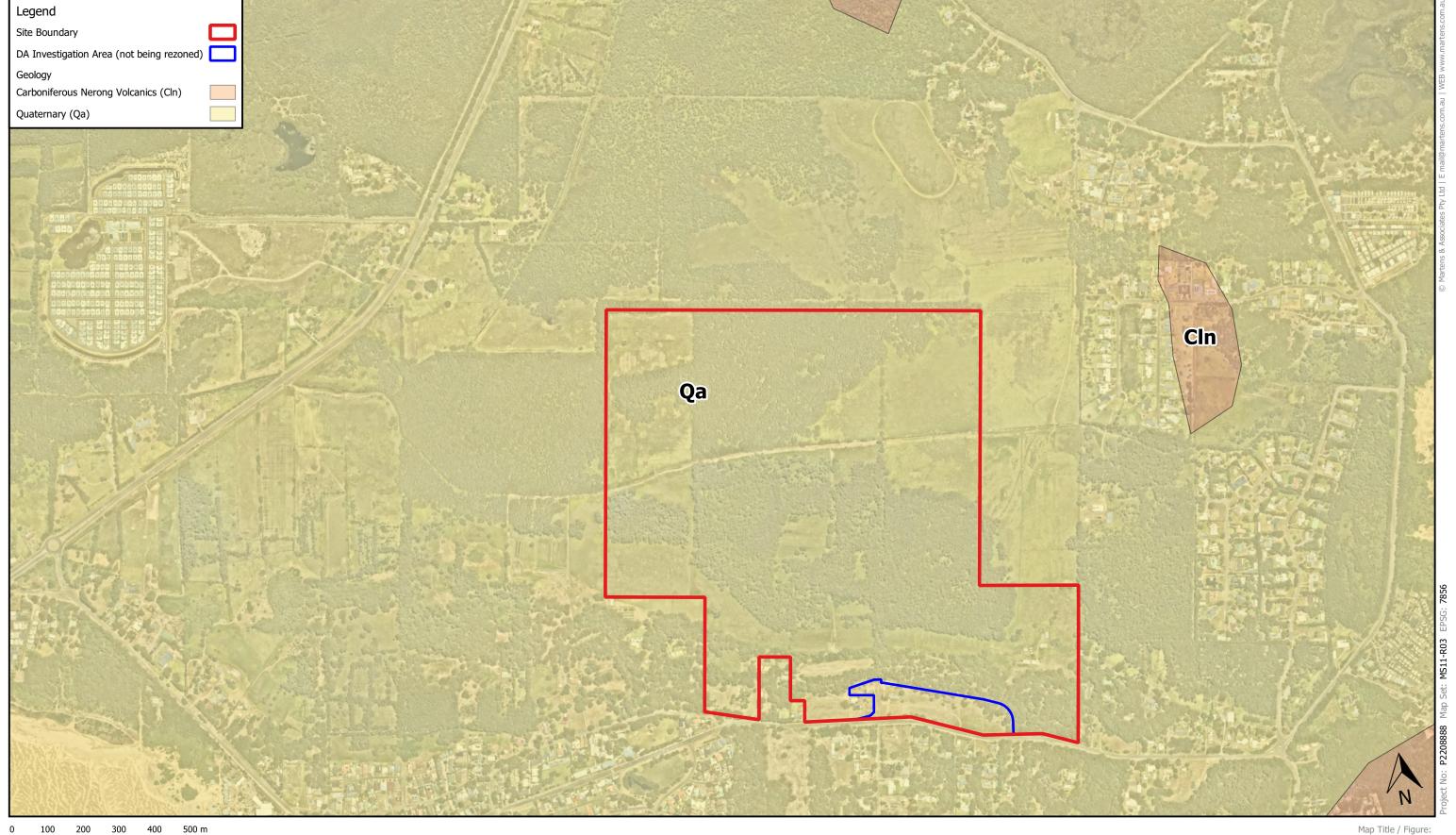
Map 01

Sub-Project Client Date

Site

Project

Topography / Slope Analysis Map


1:10000 @ A3 Viewport

Note: - Aerial from Nearmap (2022).

martens
Environment | Water | Geotechnics | Civil | Projects

Map 02 Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning Geotechnical and Acid Sulfate Soil Assessment

AB Rise Pty Ltd 04/12/2024

Мар

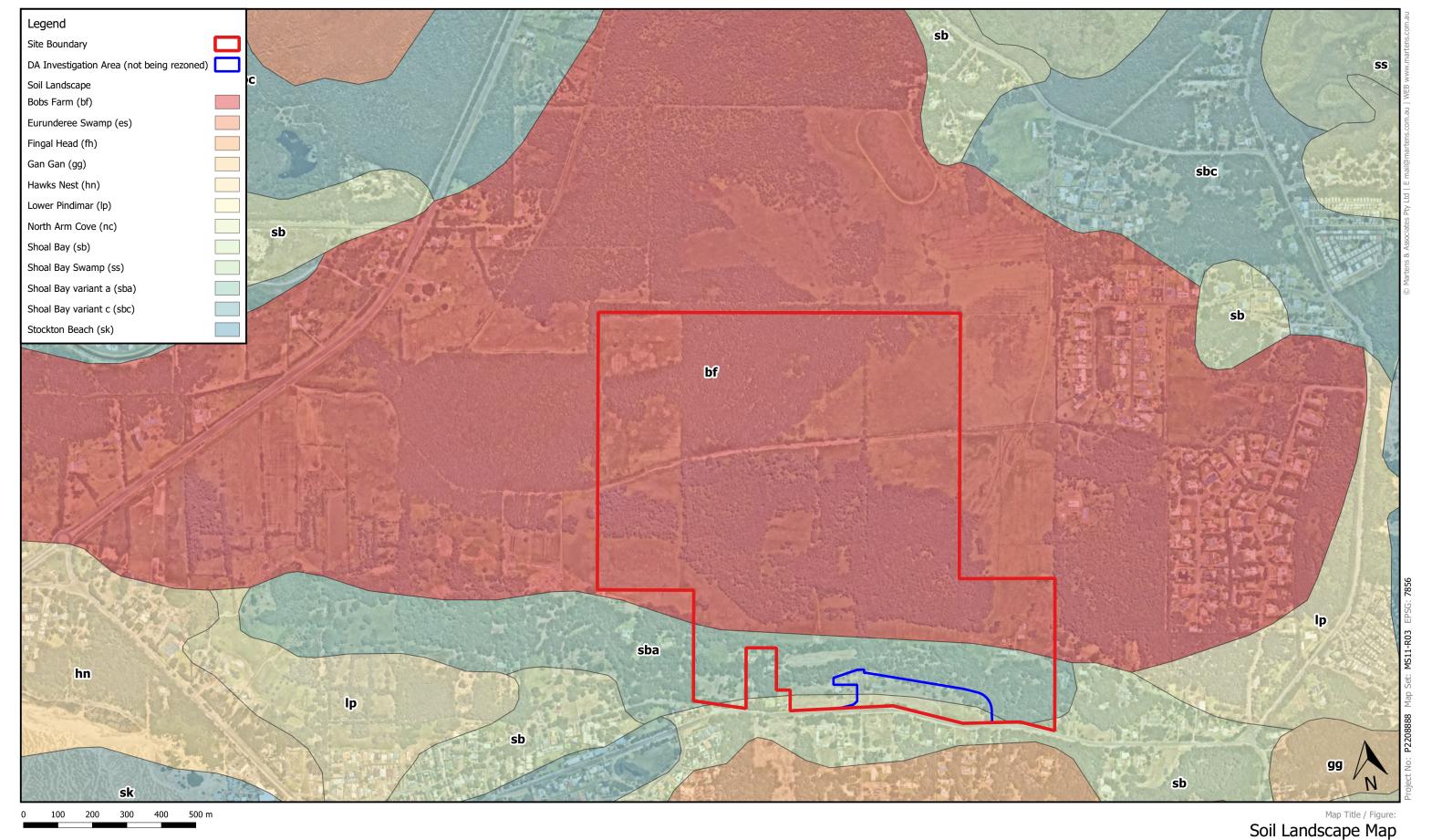
Site

Project

Client

Sub-Project

Map Title / Figure: Geology Map


Viewport

1:10000 @ A3

Note: - Aerial from Nearmap (2022).

Map 03 Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning Geotechnical and Acid Sulfate Soil Assessment AB Rise Pty Ltd 04/12/2024

Environment | Water | Geotechnics | Civil | Projects

1:10000 @ A3

Viewport

Note: - Aerial from Nearmap (2022).

Map 04

Мар

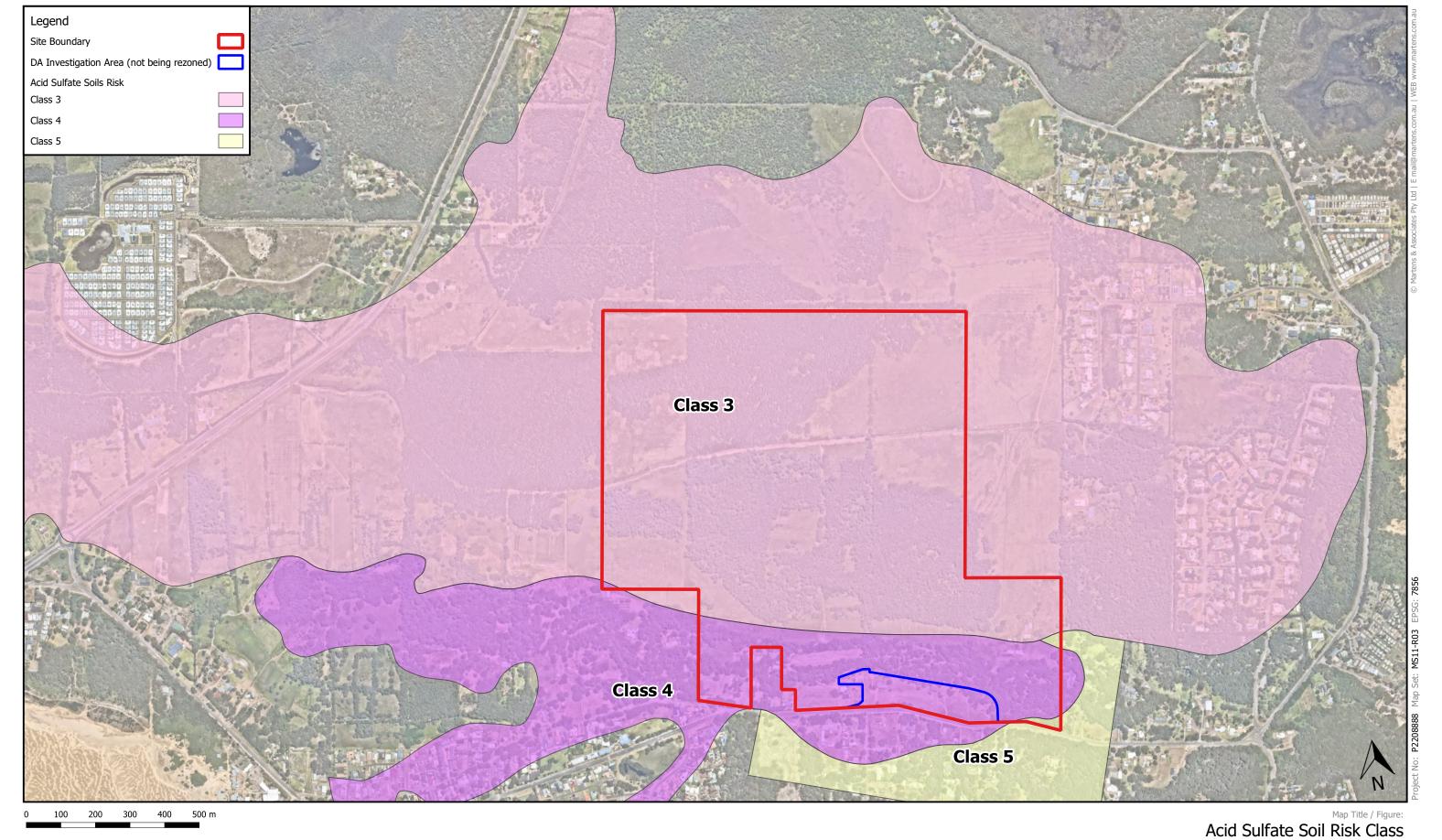
Site

Project

Client

Date

Sub-Project

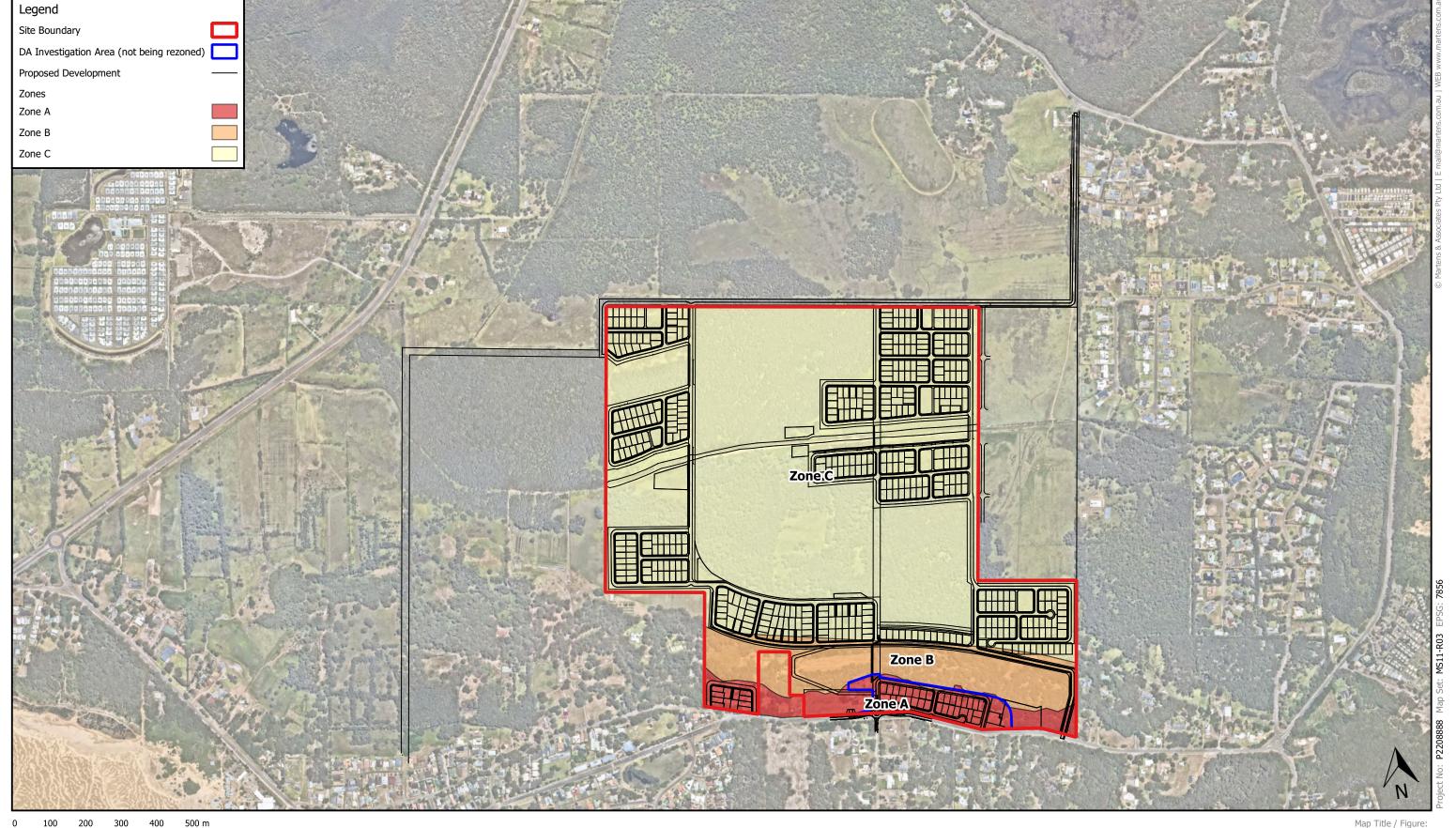

Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning

Geotechnical and Acid Sulfate Soil Assessment

AB Rise Pty Ltd

04/12/2024

1:10000 @ A3


Viewport

Note: - Aerial from Nearmap (2022).

Map 05 Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning Geotechnical and Acid Sulfate Soil Assessment

AB Rise Pty Ltd 04/12/2024 Project

Map Title / Figure: Indicative Boundary of Geotechnical Zones

Viewport

1:10000 @ A3

Note: - Aerial from Nearmap (2022).

Map 06 Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning Geotechnical and Acid Sulfate Soil Assessment AB Rise Pty Ltd

04/12/2024

Geotechnical Investigation Plan - 1

Map 07

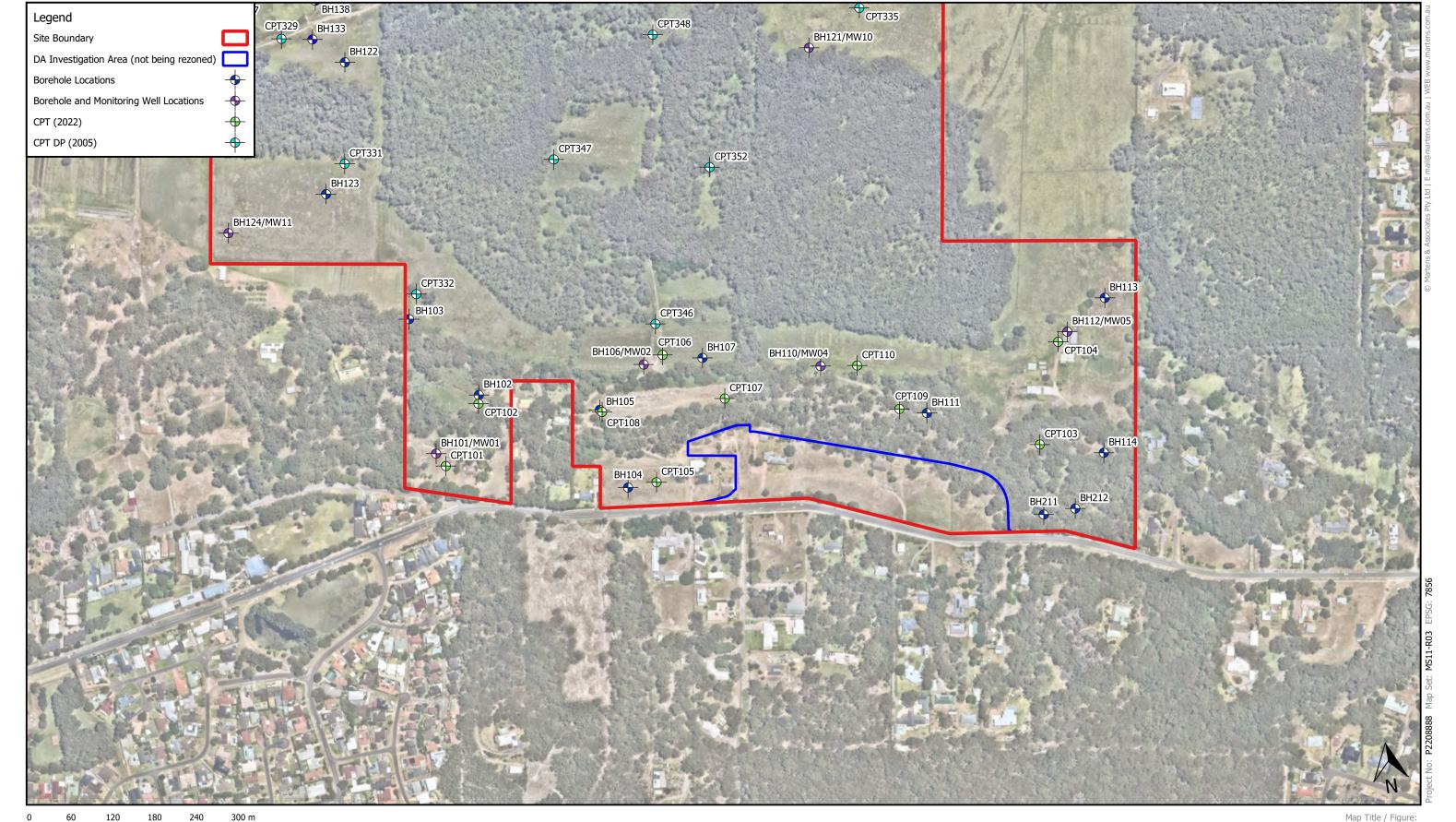
Site

Client

Date

Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning

> AB Rise Pty Ltd 04/12/2024


Project Geotechnical and Acid Sulfate Soil Assessment Sub-Project

1:5000 @ A3

Viewport A

Note: - Aerial from Nearmap (2022).

1:5000 @ A3

Viewport B

Note: - Aerial from Nearmap (2022).

martens Environment | Water | Geotechnics | Civil | Projects

Geotechnical Investigation Plan - 2

Map 08 Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning Geotechnical and Acid Sulfate Soil Assessment

AB Rise Pty Ltd

04/12/2024

Project

Client

Sub-Project

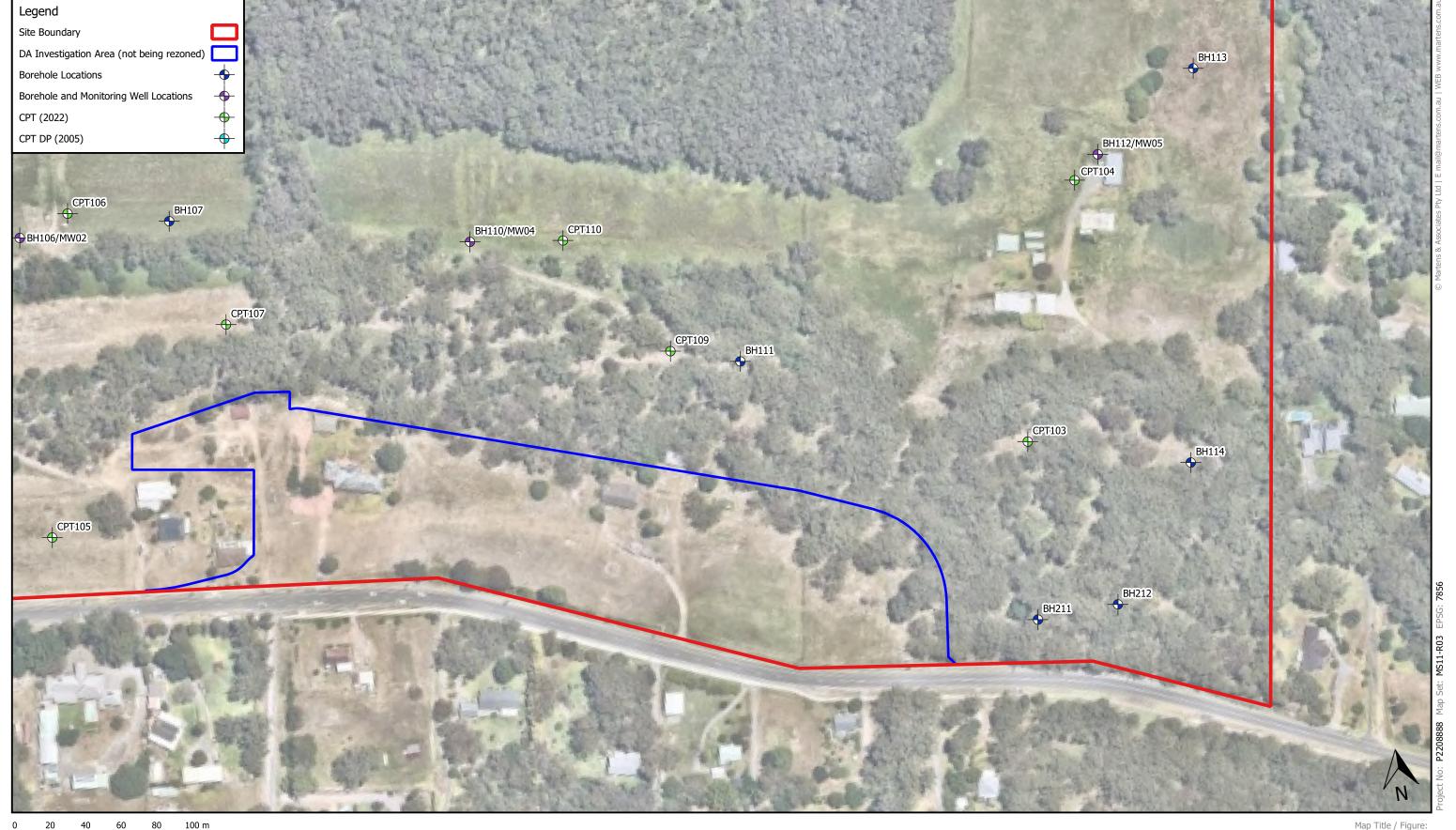
Geotechnical Investigation Plan - 3

Map 09

Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning Geotechnical and Acid Sulfate Soil Assessment

AB Rise Pty Ltd

04/12/2024


Project

Sub-Project Client

martens
Environment | Water | Geotechnics | Civil | Projects

1:2000 @ A3 Viewport C

Note: - Aerial from Nearmap (2022).

Map Title / Figure: Geotechnical Investigation Plan - 4

Map 10

Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning

Geotechnical and Acid Sulfate Soil Assessment

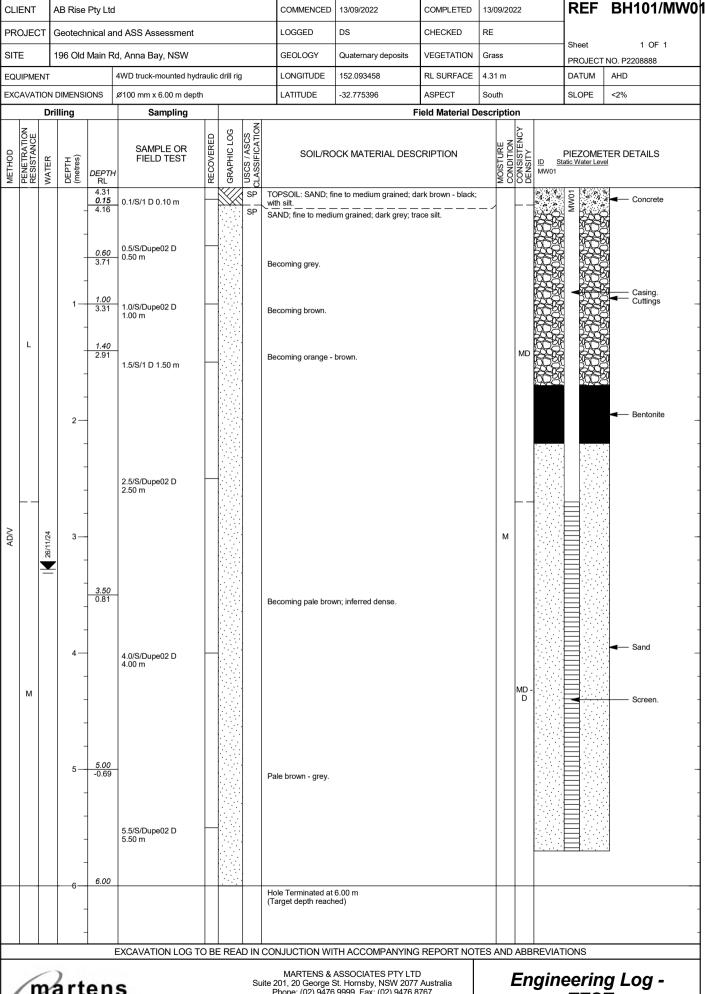
Client AB Rise Pty Ltd 04/12/2024

Project

Sub-Project

martens
Environment | Water | Geotechnics | Civil | Projects

1:2000 @ A3


Viewport D

Note: - Aerial from Nearmap (2022).

Appendix B – Borehole and Monitoring Well Logs

CL	IENT	1	AB Rise	Pty Ltd					COMMENCED	13/09/2022	COMPLETED	13/09	9/202	22	REF BH101
PR	OJE	ст	Geotech	nical ar	nd ASS Assessment				LOGGED	DS	CHECKED	RE			
SIT	Έ	1	196 Old	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary Deposits	VEGETATION	Gras	s		Sheet 1 OF 1 PROJECT NO. P2208888
EQI	JIPME	NT			4WD truck-mounted hyd	aulic	drill rig	1	LONGITUDE	152.093458	RL SURFACE	4.31	m		DATUM AHD
EXC	CAVA	TION [DIMENSI	ONS	Ø100 mm x 6.00 m dept	1			LATITUDE	-32.775396	ASPECT	South	h		SLOPE <2%
		Dri	lling		Sampling				•	F	ield Material D	escri	ptio	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DESC			CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				4.31 0.15	0.1/S/1 D 0.10 m			\vdash \dashv	with silt.	ne to medium grained; da					TOPSOIL
			_	4.16				SP	SAND; fine to media	um grained; dark grey; tra	ice silt.				MARINE DEPOSITS -
			- - -	<u>0.60</u> 3.71	0.5/S/Dupe02 D - 0.50 m				Becoming grey.						- -
			1	<u>1.00</u> 3.31	1.0/S/Dupe02 D 1.00 m				Becoming brown.						-
	L		-	1.40 2.91	1.5/S/1 D 1.50 m				Becoming orange -	brown.				MD	-
			2		1.3/3/1 0 1.30 11										- - -
		Not Encountered	- -		2.5/S/Dupe02 D 2.50 m										- - -
AD/V		Not Enc	3	3.50 0.81					Becoming pale brov	vn; inferred dense.			М		- - -
	М		4 — - -		4.0/S/Dupe02 D 4.00 m									MD - D	- - -
			5 —	5.00 -0.69					Pale brown - grey.						- - -
			- - 6-	6.00	5.5/S/Dupe02 D 5.50 m										-
			- - -						Hole Terminated at (Target depth reach	6.00 m ed)					
					EXCAVATION LOG T	O BE	REA	DINC	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	ND	ABBI	REVIATIONS
(art ight Martens						e 201, 20 George 5 Phone: (02) 9476	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8' WEB: http://www.marte	Australia 767		ı	Eη	gineering Log - BOREHOLE

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

Engineering Log - TEST

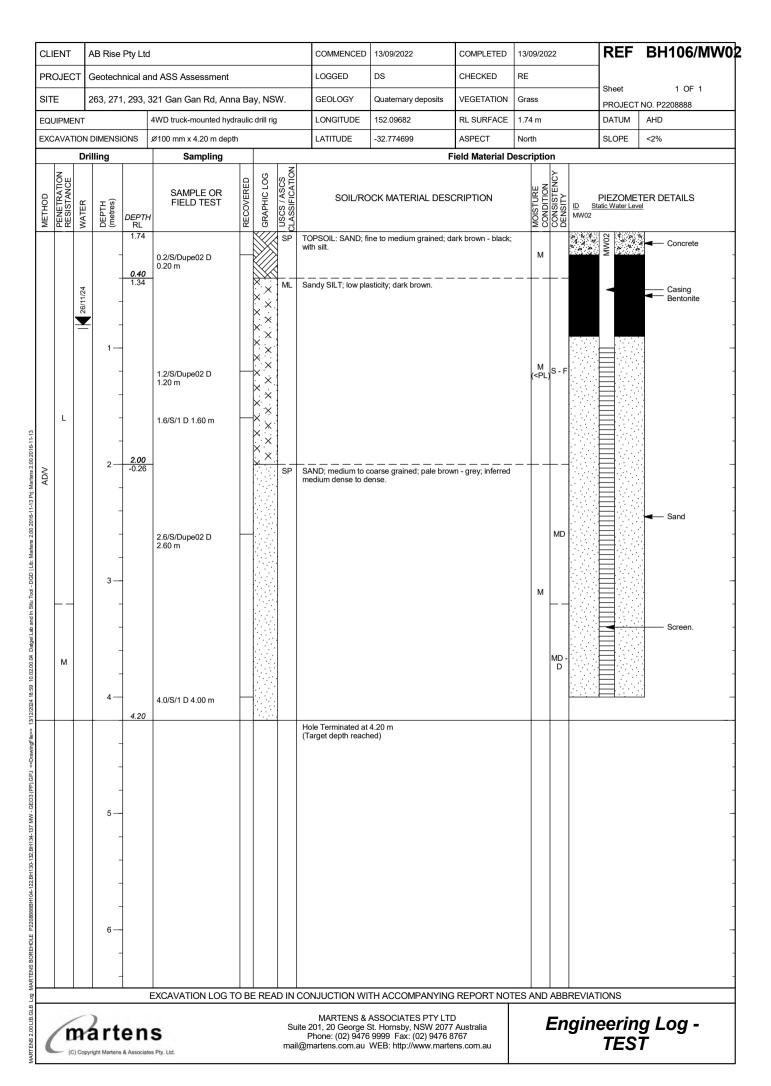
CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	13/09/2022	COMPLETED	13/09/2	022		REF	BH102
PR	OJE	ст	Geotech	nical ar	nd ASS Assessment				LOGGED	DS	CHECKED	RE				
SIT	E	1	96 Old	Main Ro	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Grass			Sheet	1 OF 1 NO. P2208888
EQ	UIPME	NT			4WD truck-mounted hyd	raulic	drill rig		LONGITUDE	152.09425	RL SURFACE	17 m			DATUM	AHD
EXC	CAVA	TION [DIMENSI	ONS	Ø100 mm x 4.50 m dept	h			LATITUDE	-32.774739	ASPECT	South			SLOPE	<2%
			lling		Sampling	_			•	F	ield Material D		_			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
				17.00 0.15	0.1/S/1 D 0.10 m				TOPSOIL: SAND; fi	ne to medium grained; da	ark grey; trace silt.			TOPSO		
ADIV	L	Not Encountered	1	1.30 15.70	0.5/S/Dupe02 D 0.50 m 1.0/S/Dupe02 D 1.00 m 1.5/S/1 D 1.50 m				SAND; fine to mediu	ım grained; grey; trace si	it.	М	MD	AEOLIA	N DEPOSI	rs
	М		4	3.50 13.50 4.50	4.0/S/Dupe02 D 4.00 m				dense. Hole Terminated at		race silt; inferred		D			- - - -
			5 —						(Target depth reach	ed)						- - - - -
	_	_			EXCAVATION LOG T	O BE	REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES ANI	ABB	REVIAT	ONS	
	/r	na	art	en	s			Suite	e 201, 20 George S	ASSOCIATES PTY LTC St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8	Australia		En		erin	g Log -

CLII	ENT	1	AB Rise	Pty Ltd					(COMMENCED	13/09/2022	COMPLETED	13/09	9/202	22		(EF	BH103	
PRO	JEC	ст	Geotech	nical ar	nd ASS Assessment				L	.OGGED	DS	CHECKED	RE			Sr	neet	1 OF 1	
SITI	Ξ	1	196 Old	Main R	d, Anna Bay, NSW					GEOLOGY	Quaternary deposits	VEGETATION	Grass	s				NO. P2208888	
EQU	IPME	ENT			4WD truck-mounted hydra	aulic	drill rig	ı	L	ONGITUDE	152.093387	RL SURFACE	4 m			D/	ATUM	AHD	
EXC	AVAT	ΓΙΟΝ	DIMENSI	IONS	Ø4.5 mm x 4.50 m depth				L	ATITUDE	-32.773624	ASPECT	North	1		SL	_OPE	<2%	
		Dri	illing		Sampling	_					F	ield Material D	escri	ptio	n				
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		SOIL/RC	OCK MATERIAL DESC	CRIPTION	E	CONDITION	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
_		_		4.00			V/	SP		SOIL: SAND; fi	ne to medium grained; da	ark grey; with silt.				TOPSOIL			_
			-	0.20 3.80	0.1/S/1 D 0.10 m		× × ×	SM	Silty	SAND; fine to r	nedium grained; dark gre	ey - black; with silt		М		MARINE D	EPOSITS	3	
			-		0.5/S/Dupe02 D 0.50 m		×												
		Molful	1	3.10	1.0/S/Dupe02 D 1.00 m		× × × × ×	SM	Silty	SAND; fine to r	nedium grained; black; m	ild organic odour	. – †		L				-
			-	2.60	1.5/S/1 D 1.50 m			SP		 D; medium grai depth.	ined; dark grey; with silt; r	mild odour increas	 sing						
AD/V	L		2— 3—		2.5/S/Dupe02 D 2.50 m									W	MD				
			4	4.50	4.0/S/Dupe02 D 4.00 m														-
			-							Terminated at get depth reach									-
			_	-															
			5																_
																			_
			-																•
			-	-															-
			-	-															-
			_																
			6-	1															-
			-	1															-
			-	-															
			1		L EXCAVATION LOG TO) BI	E REA	D IN	CON	JUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	ND	ABB	REVIATIOI	NS		_
h	/) .					ç.	iito 20	MARTENS &	ASSOCIATES PTY LTD) Austrolia		-	Fn	aine	rin	a Loa -	

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	1	AB Rise	Pty Ltd					COMMENCED	13/09/2022	COMPLETED	13/09/202	22	REF BH104
PR	OJEC	т	Geotech	nical ar	nd ASS Assessment				LOGGED	DS	CHECKED	RE		
SIT	E	2	263, 271	, 293, 3	321 Gan Gan Rd, Ann	a Ba	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Grass		Sheet 1 OF 1
EQI	JIPME	NT			4WD truck-mounted hyd	raulic	drill rig	l	LONGITUDE	152.096274	RL SURFACE	5 m		PROJECT NO. P2208888 DATUM AHD
EXC	AVAT	ION I	DIMENSI	ONS	Ø100 mm x 4.50 m depti	1			LATITUDE	-32.776235	ASPECT	North		SLOPE <2%
		Dri	lling		Sampling				<u>'</u>	F	ield Material D		_	
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL 5.00	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DESC		MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			_	0.20 4.80	0.1/S/1 D 0.10 m		X			ne to medium grained; da 		· 		TOPSOIL MARINE DEPOSITS
			- -		0.5/S/Dupe02 D 0.50 m									
	L		1	1.20 3.80	1.0/S/Dupe02 D 1.00 m				Becoming brown.				MD	-
			_		1.5/S/1 D 1.50 m									
ADIV		Not Encountered	2-	<u>2.00</u> 3.00					Becoming orange b	rown.		М		-
		Not	- -		2.5/S/Dupe02 D 2.50 m									
			3	3.00 2.00					² ale brown.					
TO LEGACE TO	М		- -										D	
5.			4	450	4.0/S/Dupe02 D 4.00 m									
			-	4.50					Hole Terminated at Target depth reach					
			5											
			_											
NTENO DOTICE DE ESCOGO DE PRESENTA DE LA CONTRETA DEL CONTRETA DE LA CONTRETA DEL CONTRETA DE LA CONTRETA DEL CONTRETA DE LA CONTRETA DE LA CONTRETA DE LA CONTRETA DE LA CONTRETA DEL CONTRETA DE LA CONTRETA DEL CONTRETA DE LA CONTRETA DE LA CONTRETA DE LA CONTRETA DE LA CONTRETA DEL CONTRETA DE LA CONTRETA DE LA CONTRETA DE LA CONTRET			6											
			-											
Ray	_				L EXCAVATION LOG T	ОВ	E REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NO	ES AND	ABB	REVIATIONS
	/n	na	art	en	s			Suite	201, 20 George S	ASSOCIATES PTY LTI St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8	' Australia		Εn	gineering Log -

Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

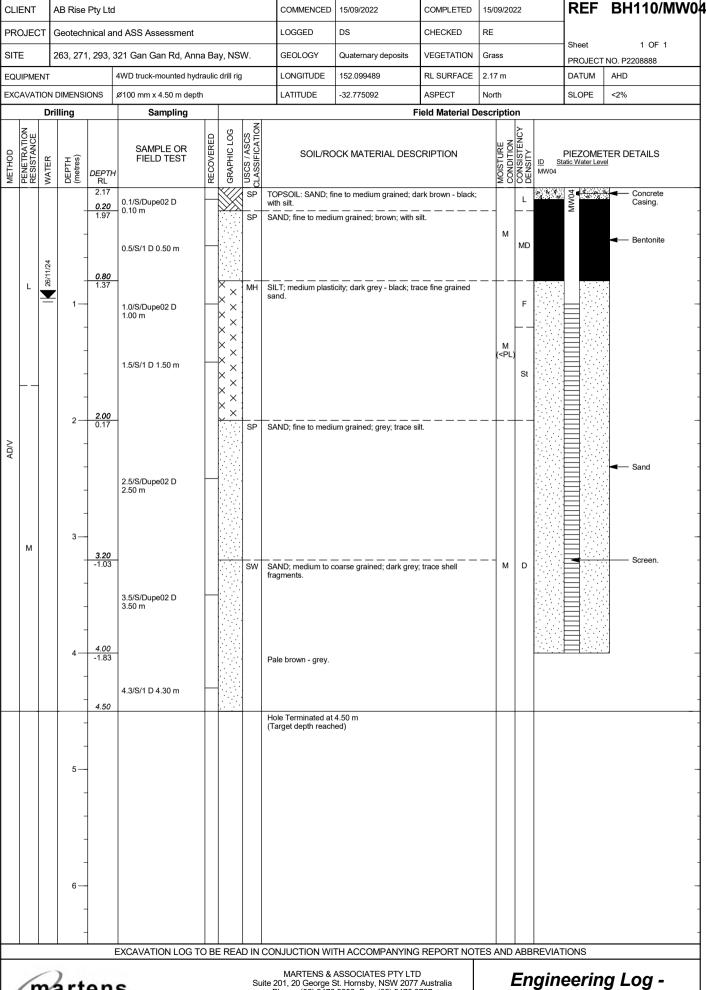

BOREHOLE

CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	13/09/2022	COMPLETED	13/0	9/20	22		REF	BH105	
PR	OJEC	ст	Seotech	nical ar	nd ASS Assessment				LOGGED	DS	CHECKED	RE						
SIT	E	2	63, 271	, 293, 3	321 Gan Gan Rd, Anna	a Ba	ıy, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss			Sheet	1 OF 1	
-	UIPME		<u> </u>		4WD truck-mounted hydr				LONGITUDE	152.096042	RL SURFACE	17 m	<u> </u>			DATUM	NO. P2208888 AHD	
\vdash			DIMENSI	-	Ø100 mm x 4.45 m depth			,	LATITUDE	-32.775185	ASPECT	Sout				SLOPE	<2%	
		Dril	lling		Sampling						l ield Material D			n	ļ			
МЕТНОБ	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC			•	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
			-	17.00 0.40 16.60	0.2/S/Dupe02 D 0.20 m			SP	with silt.	ne to medium grained; bla					TOPSO	N DEPOSIT	rs — — — — -	-
		pe	- 1— - -	1.00 16.00	0.8/S/1 D 0.80 m SPT 1.00-1.45 m 5, 4, 3 N = 7 1.0-1.45/S/1				Brown.	im gramed, grey, trace si	ı.				7.2027			-
AD/V	L	Not Encountered	2	2.00 15.00 2.30 14.70	2.0/S/Dupe02 D 2.00 m				Yellowish brown. Brown.				М	L - MD				-
-			3 — - - -	2.70 14.30	2, 3, 4 N = 7 2.5-2.95/S/1				Pale yellowish brow	n.								-
			4 — -	4.45	SPT 4.00-4.45 m 4, 4, 5 N = 9 4.0-4.45/S/1													-
			5						Hole Terminated at (Target depth reach									-
			- - 6															- - -
<u></u>			1		LEXCAVATION LOG TO) DBE	E REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ΓES A	AND	ABB	I REVIAT	IONS		
	/r	n	rt	۵n	e			Suit	e 201, 20 George S	ASSOCIATES PTY LTD	Australia		1	En	gine	erin	g Log -	

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIE	NT	Α	B Rise	Pty Ltd					COMMENCED	13/09/2022	COMPLETED	13/0	09/20	22		REF	BH106
PRO	JEC	тС	Seotech	nical an	nd ASS Assessment				LOGGED	DS	CHECKED	RE					
SITE		2	63, 271	, 293, 3	321 Gan Gan Rd, Ann	a Ba	y, NS\	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss			Sheet	1 OF 1 NO. P2208888
EQUI	PME	NT			4WD truck-mounted hyd	raulio	drill rig		LONGITUDE	152.09682	RL SURFACE	1.74	l m			DATUM	AHD
EXCA	VAT	ION E	IMENSI	SNC	Ø100 mm x 4.20 m deptl	h			LATITUDE	-32.774699	ASPECT	Nort	th		:	SLOPE	<2%
		Dril	ling		Sampling				•	F	ield Material D		_				
METHOD	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL 1.74	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS		OCK MATERIAL DES			MOISTURE	CONSISTENCY DENSITY		ADI OBSE	CTURE AND DITIONAL ERVATIONS
	0.2/S/Dupe02 D 0.20 m								TOPSOIL: SAND; fi	ne to medium grained; d	ark brown - black;		M M (<pl)< td=""><td>S-F</td><td></td><td>DEPOSIT:</td><td>s</td></pl)<>	S-F		DEPOSIT:	s
ADN	L 1.6/S/1 D 1.60 m X X X X X X X X X X X X X X X X X X						IX · ·	SW :	SAND; medium to c medium dense to d	oarse grained; pale brov ense.	wn - grey; inferred		М	MD			- - - -
	М		4	4.20	4.0/S/1 D 4.00 m									MD - D			-
			- -						Hole Terminated at Target depth reach								
			5 —														-
			6														
				E	EXCAVATION LOG T	ОВ	REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NO	TES /	AND	ABB	REVIATION	ONS	
	/		e e t	۵n	c			Suite		ASSOCIATES PTY LT St. Hornsby, NSW 2077			ı	Εn	gine	erin	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au



CL	ENT	A	B Rise	Pty Ltd					COMMENCED	13/09/2022	COMPLETED	13/0	09/20	22		REF	BH107
PR	OJEC	т	Seotech	nical aı	nd ASS Assessment				LOGGED	DS	CHECKED	RE					
SIT	Έ	2	63, 271	, 293,	321 Gan Gan Rd, Anna	а Ва	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2208888
EQ	JIPME	NT			4WD truck-mounted hydr	aulic	drill rig	1	LONGITUDE	152.097723	RL SURFACE	5 m				DATUM	AHD
EXC	CAVAT	ION [DIMENSI	SNC	Ø100 mm x 1.90 m depth	ı			LATITUDE	-32.774739	ASPECT	Nor	th		S	SLOPE	<2%
			ling		Sampling					F	ield Material D		· ·				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		ADI OBSE	CTURE AND DITIONAL ERVATIONS
			-	5.00 0.50	0.2/S/1 D 0.20 m		× × × × × ×	ML	Sandy SILT; low pla	sticity; dark brown.			M (<pl)< td=""><td></td><td>MARINE</td><td>DEPOSITS</td><td>-</td></pl)<>		MARINE	DEPOSITS	-
PT	L	Not Encountered	- 1 - -	0.50 4.50	1.0/S/1 D 1.00 m			SP	SAND; fine to medic inferred loose to me	ım grained; pale brown - dium dense.	grey; trace silt;		М	L - MD			- - - -
	1.7/S/1 D 1.70 m															_	
			2						Hole Terminated at (Target depth reach								
			_														-
	/) ,		EXCAVATION LOG TO	O BI	E REA		MARTENS &	TH ACCOMPANYING ASSOCIATES PTY LTE		res /					a Loa -

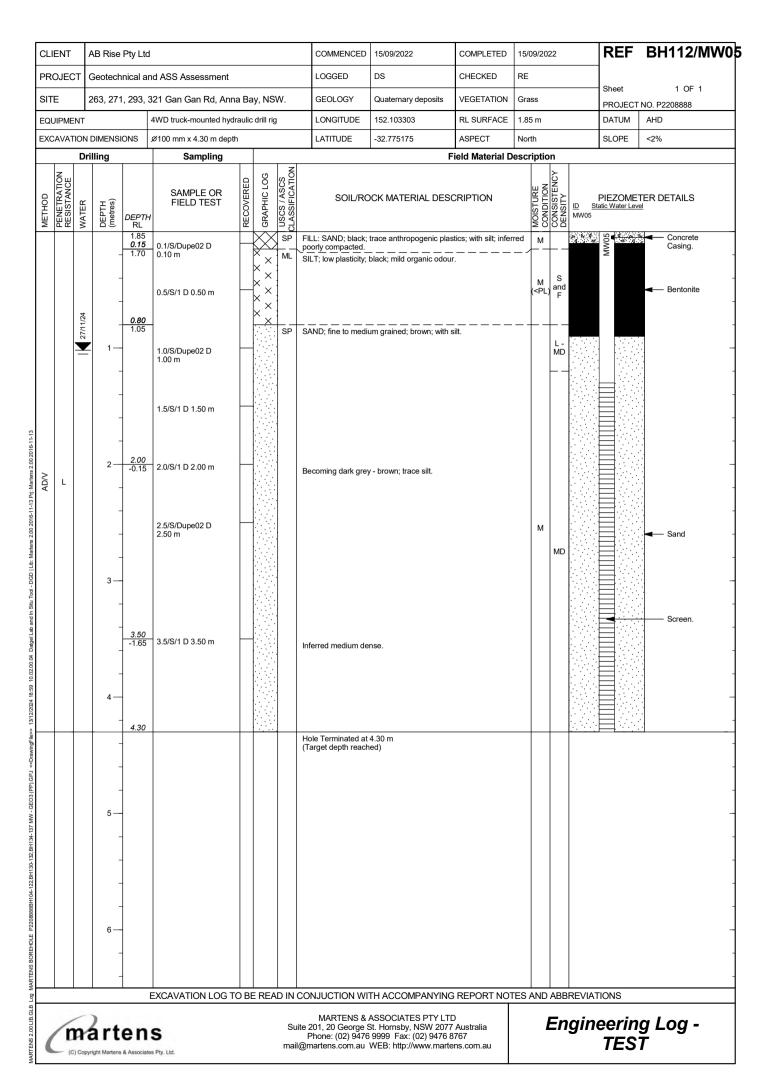
MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIE	ENT	Α	AB Rise	Pty Ltd					COMMENCED	15/09/2022	COMPLETED	15/09/20	22	REF	BH110
PRO	JEC	т	Geotech	nical ar	nd ASS Assessment				LOGGED	DS	CHECKED	RE		Sheet	1 OF 1
SITE	•	2	263, 271	, 293, 3	321 Gan Gan Rd, Anna	а Ва	ay, NS\	W.	GEOLOGY	Quaternary deposits	VEGETATION	Grass			T NO. P2208888
EQU	IPME	NT			4WD truck-mounted hydra	aulio	drill rig	l	LONGITUDE	152.099489	RL SURFACE	2.17 m		DATUM	AHD
EXC	AVAT	ION [DIMENSI	ONS	Ø100 mm x 4.50 m depth				LATITUDE	-32.775092	ASPECT	North		SLOPE	<2%
		Dri	lling		Sampling	_				F	ield Material D				
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY	STR AI OBS	UCTURE AND DDITIONAL SERVATIONS
		-		2.17	0.1/S/Dupe02 D			SP	TOPSOIL: SAND; fi	ne to medium grained; da	ark brown - black;		L	TOPSOIL	
			_	0.20 1.97	0.5/S/1 D 0.50 m			\vdash \vdash		um grained; brown; with s	ilt.	М	MD	MARINE DEPOSI	TS .
	L			0.80 1.37			××		SILT; medium plasti sand.	 city; dark grey - black; tra	 ace fine grained		F		_
			· -		1.0/S/Dupe02 D 1.00 m		× × ; × × ; × × ;					M (<pl< td=""><td></td><td></td><td></td></pl<>			
		-	-		1.5/S/1 D 1.50 m		× × × × × × × ×						St		
AD/V		Not Encountered	2	2.00 0.17	2.5/S/Dupe02 D 2.50 m		×	SP	SAND; fine to mediu	 um grained; grey; trace si	it.				-
	М		3	3.20 -1.03					SAND; medium to c	oarse grained; dark grey;	; trace shell	M	D		-
			- - -		3.5/S/Dupe02 D 3.50 m				ragments.						
			4	4.00 -1.83	4.3/S/1 D 4.30 m				Pale brown - grey.						-
			-	4.50					Hole Terminated at (Target depth reach						
			5												-
			_												
			-												
			6												-
			_												
	,)		EXCAVATION LOG TO	ЭB	E REA	D IN C		TH ACCOMPANYING ASSOCIATES PTY LTD				REVIATIONS	

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

10.02.00.04 Datgel Lab and In Situ Tool - DGD | Lib: Martens 2.00 2016-11-13 Prj; Martens 2.00 2016-11-13

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au


Engineering Log - TEST

CI	IENT	1	AB Rise	Pty Ltd					COMMENCED	15/09/2022	COMPLETED	15/0	9/20	22	R	EF	BH111
PF	ROJE	т	Geotech	nical ar	d ASS Assessment				LOGGED	DS	CHECKED	RE					
SI	ΤE	2	263, 271	, 293, 3	321 Gan Gan Rd, Ann	ıa Ba	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss		She		1 OF 1 NO. P2208888
EC	UIPME	NT			4WD truck-mounted hyd	raulic	drill rig	9	LONGITUDE	152.100977	RL SURFACE	20 r	n			TUM	AHD
EX	CAVA	TION I	DIMENSI	ONS	Ø100 mm x 4.50 m dept	h			LATITUDE	-32.775916	ASPECT	Nor	th		SLO	OPE	<2%
		Dri	lling		Sampling					Fi	ield Material D	escr	iptio	n		<u></u>	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		ADD	CTURE AND DITIONAL RVATIONS
F	T-			20.00				SP	SAND; fine to media	um grained; black; trace s	ilt.				AEOLIAN DI	EPOSIT	s
DONGTOLE TEXOBOOGNIUS LEGISIUS INT COCOUNTY STATEMENT OF THE TOTAL TOTAL STATEMENT OF THE T		Not Encountered	1— 1— 3— 4— 5— 6—	20.00 0.15 19.85 0.80 19.20 17.50 3.20 16.80	0.1/S/I D 0.10 m 0.5/S/Dupe02 D 0.50 m 1.0/S/Dupe02 D 1.00 m 1.5/S/1 D 1.50 m 2.0/S/Dupe02 D 2.00 m 3.5/S/Dupe02 D 3.50 m			SP SP	SAND; fine to media Becoming pale brown. Becoming brown.	um grained; dark grey. vn. vo. vo. vo. vo. vo. 4.50 m			М	MD L	AEOLIAN DI	erosil	
)			O BE	E REA		MARTENS &	TH ACCOMPANYING)	ΓES					a Loa -
	/r	n	art	en	S			Sui	te 201, 20 George S	St. Hornsby, NSW 2077	Australia		ı	=[]	giriee	:////	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	15/09/2022	COMPLETED	15/0	9/20	22		REF	BH112
PR	OJE	ст с	Geotech	nical ar	nd ASS Assessment				LOGGED	DS	CHECKED	RE					
SIT	Έ	2	263, 271	, 293, 3	321 Gan Gan Rd, Anna	a Ba	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss			Sheet	1 OF 1 NO. P2208888
EQ	UIPME	ENT			4WD truck-mounted hydr	aulic	drill rig	J	LONGITUDE	152.103303	RL SURFACE	1.85	m			DATUM	AHD
EXC	CAVA	TION [DIMENSI	ONS	Ø100 mm x 4.30 m depth	1			LATITUDE	-32.775175	ASPECT	Nort	h			SLOPE	<2%
		Dril	lling		Sampling					F	ield Material D	escr	iptio	n			
МЕТНОВ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS
				1.85 0.15	0.1/S/Dupe02 D			SP	FILL: SAND; black; poorly compacted.	trace anthropogenic plas	tics; with silt; infer		М		FILL		
			1—	0.80 1.05	0.5/S/1 D 0.50 m 0.5/S/Dupe02 D 1.00 m		^ × × × × × × × × × × × × × × × × × × ×	SP		black; mild organic odour			M (<pl)< th=""><th>S and F L- MD</th><th>MARINE</th><th>E DEPOSIT</th><th>- - -</th></pl)<>	S and F L- MD	MARINE	E DEPOSIT	- - -
	1.5/S/1 D 1.50 m 1.5/S/1 D 1.50 m 2 2.00 -0.15 2.0/S/1 D 2.00 m								December dark group	u brown trace eilt							- - -
AD/V	L	Not Enco	3	-5.13	2.5/S/Dupe02 D 2.50 m				Becoming dark grey	/- brown; trace siit.			М	MD			- - - -
			- - - 4		3.5/S/1 D 3.50 m				Inferred medium de	nse.							- - -
			_	4.30					Hole Terminated at								
			5						(Target depth reach								- - - - - -
Ĺ					EXCAVATION LOG TO	ЭВ	REA	D IN	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES A	AND	ABB	REVIAT	IONS	
	/r	n	art	en	s			Su	ite 201, 20 George S	ASSOCIATES PTY LTD St. Hornsby, NSW 2077	Australia		1	Εn	gine	erin	g Log -

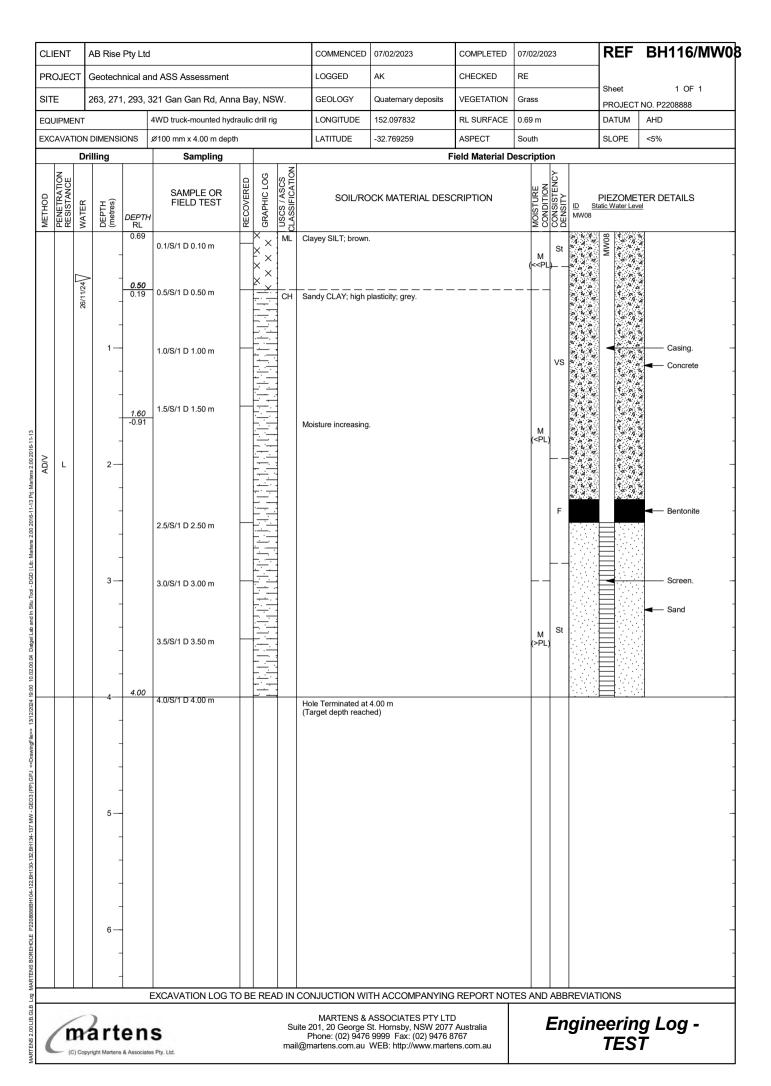
MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	- 1	AB Rise	Pty Ltd					COMMENCED	15/09/2022	COMPLETED	15/09/20)22		KEF	BH113	
PR	DJEC	т	Geotech	nical an	nd ASS Assessment				LOGGED	DS	CHECKED	RE			ļ., .		
SIT	Ξ	2	263, 271	, 293, 3	321 Gan Gan Rd, Anna	а Ва	ay, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P2208888	
EQL	IIPME	NT			4WD truck-mounted hydra	aulio	drill rig	ı	LONGITUDE	152.103954	RL SURFACE	5 m			DATUM	AHD	
EXC	AVAT	ION	DIMENSI	ONS .	Ø100 mm x 1.80 m depth				LATITUDE	-32.774823	ASPECT	North			SLOPE	<2%	
		Dri	illing		Sampling				<u> </u>	F	ield Material D	escripti	on				
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
		_		0.10	0.05/S/1 D 0.05 m		X//	SP	TOPSOIL: SAND; fi	ne to medium grained; bla	ack; with silt and			TOPSO			
			-	4.90 0.50 4.50	0.3/S/1 D 0.30 m			SP	SAND; fine to medium dense. Grey - brown.	ım grained; grey - dark gı	rey; inferred loose	J de to		MARINE	E DEPOSITS	S	-
PT			1	1.40 3.60	1.0/S/1 D 1.00 m				Pale brown.			М	L - MD				- -
				1.80	1.7/S/1 D 1.70 m								<u> </u>				
			2— 3—						Hole Terminated at (Target depth reach	1.80 m ed)							
			1	F	EXCAVATION LOG TO) B	E REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NO	TES AND) ABB	REVIAT	IONS		
										ASSOCIATES BTV LTD							

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	15/09/2022	COMPLETED	15/09	9/202	22	F	REF	BH114
PR	OJE	ст	Geotech	nical ar	nd ASS Assessment				LOGGED	DS	CHECKED	RE					
SIT	E	2	263, 271	, 293, 3	321 Gan Gan Rd, Ann	a Ba	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss			heet	1 OF 1
-	UIPME				4WD truck-mounted hyd				LONGITUDE	152.103552	RL SURFACE	15 m	1			ATUM	NO. P2208888 AHD
\vdash			DIMENSI	-	Ø100 mm x 4.50 m dept				LATITUDE	-32.776798	ASPECT	North			s	LOPE	<2%
		Dri	lling		Sampling					F	Lield Material D	escri	iptio	n			
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	L	MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL RVATIONS
				15.00	0.1/S/Dupe02 D			SP	TOPSOIL: SAND; fir	ne to medium grained; bla	ack; with rootlets				TOPSOIL		
			-	14.80	0.10 m		\\ \\\	SP		um grained; black; trace s	 silt.				AEOLIAN	DEPOSIT	<u>s</u>
			_	0.50 14.50	0.5/S/1 D 0.50 m				Grey.								
			1— - -	1.10 13.90	0.9/S/Dupe02 D 0.90 m SPT 1.00-1.45 m 1, 1, 1 N = 2 1.0-1.45/S/1				Brown.					VL			
AD/V	L	Not Encountered	2	1.90 13.10	0.000/5				Pale brown - yellow.								
•		Not	3		2.3/s/Dupe02 D 2.30 m SPT 2.50-2.95 m 2, 3, 4 N = 7 2.5-2.95/S/1									L			
			- 4	4.00 11.00	3.9/S/Dupe02 D 3.90 m SPT 4.00-4.45 m 4, 5, 5 N = 10 4.0-4.45/S/1				Orange - brown.					MD			
			-						Hole Terminated at (Target depth reach								
			5														
			-														
				ı	EXCAVATION LOG T	O BE	REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	AND	ABB	REVIATIO	NS	
	/r	na	art	en	S			Suit	te 201, 20 George S	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8	Australia		ı	Εn		erin	g Log -

Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

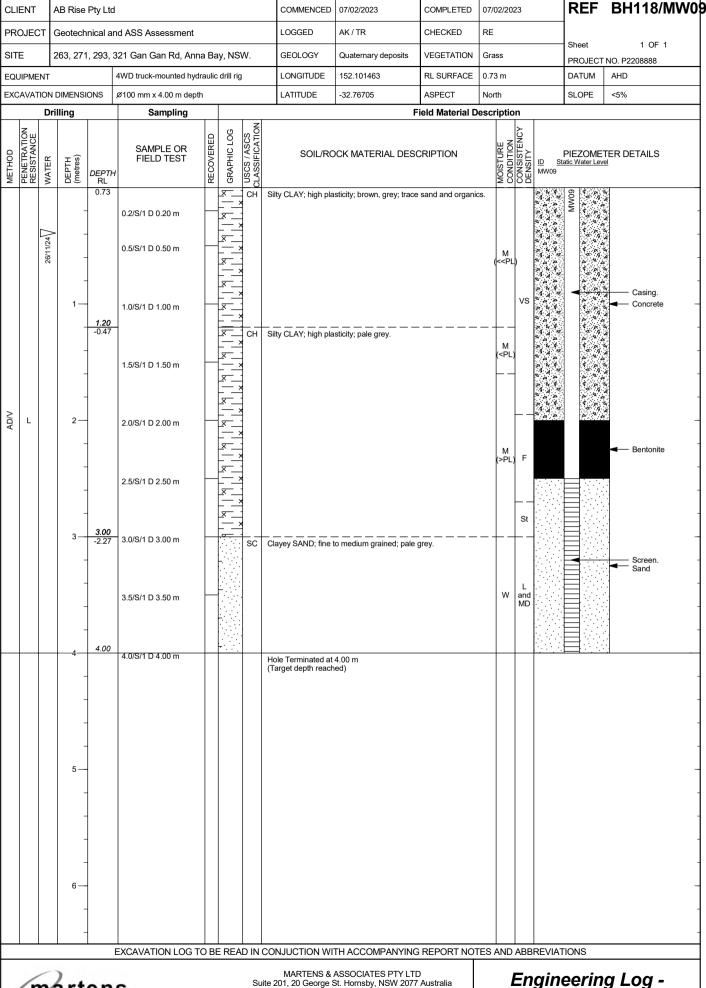

BOREHOLE

CLI	ENT	1	AB Rise	Pty Ltd	l				COMMENCED	07/02/2023	COMPLETED	07/02/20	23		REF	BH115	
PR	DJEC	т	Geotech	nical a	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE					
SIT	Ξ	2	263, 271	1, 293,	321 Gan Gan Rd, Anna	Ва	ay, NS\	W.	GEOLOGY	Quaternary deposits	VEGETATION	Grass			Sheet PROJECT	1 OF NO. P2208888	1
EQL	IIPME	NT			4WD truck-mounted hydra	aulio	drill rig		LONGITUDE	152.098308	RL SURFACE	1.2 m			DATUM	AHD	
EXC	AVAT	ION	DIMENSI	ONS	Ø100 mm x 4.00 m depth				LATITUDE	-32.770305	ASPECT	North			SLOPE	<5%	
		Dri	lling		Sampling				•	F	ield Material D		_				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS	
				1.20	0.1/S/1 D 0.10 m				TOPSOIL: Silty SAN	ID; brown, dark brown; wi	ith organics.	М	MD	TOPSOI	L		
			-	0.30	0.3/S/1 D 0.30 m		<u>×</u>	CH :			. — — — — —		<u> </u>	MARINE	DEPOSIT	-	
		√dwolini	1—		1.0/S/1 D 1.00 m		- × - × - × - × - × - × - × - × - × - ×	CH	Siliy GLAT, High pia	sticity; grey, dark grey; wi	uri sarid.	M (<pl< td=""><td>vs</td><td></td><td>. 52, 66,1</td><td></td><td>- - -</td></pl<>	vs		. 52, 66,1		- - -
			-		1.5/S/1 D 1.50 m		××										
AD/V	L		2	270	2.0/S/1 D 2.00 m		- x					M (=PL) F				- -
			-	2.70 -1.50	2.7/S/1 D 2.70 m		× .	sc (Clayey SAND; fine t	o medium grained; grey,	dark brown.	-+-	<u> </u>				-
			3	4.00	3.3/S/1 D 3.30 m							w	L				
			4		4.0/S/1 D 4.00 m				Hole Terminated at (Target depth reach								
			5—														-
					EXCAVATION LOG TO	 B	 E RF4	DINC	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIATI	IONS		
			,				`			ASSOCIATES PTY LTD							

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	IENT	Α	B Rise	Pty Ltd					COMMENCED	07/02/2023	COMPLETED	07/0	2/20	23	REF BH116
PR	OJEC	т	Seotech	nical an	d ASS Assessment				LOGGED	AK	CHECKED	RE			
SIT	E	2	63, 271	, 293, 3	21 Gan Gan Rd, Ann	а Ва	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss		Sheet 1 OF 1 PROJECT NO. P2208888
EQ	JIPME	NT			4WD truck-mounted hydr	aulic	drill riç)	LONGITUDE	152.097832	RL SURFACE	0.69	m		DATUM AHD
EXC	CAVAT	ION [DIMENSI	SNC	Ø100 mm x 4.00 m depth	1			LATITUDE	-32.769259	ASPECT	Sou	th		SLOPE <5%
		Dri	ling		Sampling	Т		Z		F	Field Material D		_		
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DES	CRIPTION		MOISTURE	CONSISTENCY DENSITY	
			-	0.69	0.1/S/1 D 0.10 m		× × × × × ×	ML	Clayey SILT; brown			(M < <pl< th=""><th>St)— —</th><th>MARINE DEPOSITS</th></pl<>	St)— —	MARINE DEPOSITS
			=	0.50 0.19	0.5/S/1 D 0.50 m		×	CH	Sandy CLAY; high p	olasticity; grey.					
			1—		1.0/S/1 D 1.00 m			-						VS	-
			_	1.60 -0.91	1.5/S/1 D 1.50 m				Moisture increasing				M (<pl)< th=""><th></th><th></th></pl)<>		
AD/V	L		2					-						F	
·		7	-		2.5/S/1 D 2.50 m										
		Inflow	3		3.0/S/1 D 3.00 m								M	St	
	3.5/S/1 D 3.50 m (>PL)														
	4 4.00 4.0/S/1 D 4.00 m Hole Terminated at 4.00 m (Target depth reached)														
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS														
	/r	n	rt	en	s			Suit	MARTENS & te 201, 20 George S	ASSOCIATES PTY LTI St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8	D 7 Australia 8767			En	gineering Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au



CLI	ENT	Α	B Rise	Pty Ltd					COMMENCED	07/02/2023	COMPLETED	07/0	02/20	23		REF	BH117
PR	OJEC	ст с	Seotech	nical an	d ASS Assessment				LOGGED	AK	CHECKED	RE					
SIT	E	2	63, 271	, 293, 3	21 Gan Gan Rd, Ann	a Ba	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss		- 1	Sheet	1 OF 1 NO. P2208888
EQI	JIPME	NT			4WD truck-mounted hyd	raulic	drill rig	1	LONGITUDE	152.100284	RL SURFACE	0.6	m			DATUM	AHD
EXC	AVA	TION E	IMENSI	ONS ,	Ø100 mm x 3.00 m depti	1			LATITUDE	-32.768084	ASPECT	Nor	th		5	SLOPE	<5%
		Dril	ling		Sampling				<u>'</u>	F	ield Material D	escr	iptio	n	<u>'</u>		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL 0.60	SAMPLE OR FIELD TEST	RECOVERED	SRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DESC			MOISTURE	CONSISTENCY DENSITY	MARINE	ADI	CTURE AND DITIONAL ERVATIONS
			-	0.00	0.2/S/1 D 0.20 m		(CH	Silly CLAY, medium	to high plasticity; trace o	graveis 2-Tomm.				TVV U CITYLE	DEI GOIN	
			_		0.5/S/1 D 0.50 m		x 					(M < <pl< td=""><td>)</td><td></td><td></td><td></td></pl<>)			
			1—	0.90 -0.30	1.0/S/1 D 1.00 m			СН	Silty CLAY; high pla	sticity; grey.			M (<pl)< td=""><td>VS</td><td></td><td></td><td>-</td></pl)<>	VS			-
AD/V	L	Nuflow	-		1.5/S/1 D 1.50 m												
			2		2.0/S/1 D 2.00 m								M (>PL)				-
	2.5/S/1 D 2.50 m 2.70 -2.10 3.00 3.00 3.00 4.5 5.5 CH Sandy CLAY; high plasticity; grey. Hole Terminated at 3.00 m (Target depth reached)																
	Hole Terminated at 3.00 m (Target depth reached)																
			_														
			4														
			-														
			5														
			-														
			6														
	I	ш		<u> </u>	 Excavation log t	O BE	L E REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NO	TES A	AND	ABBF	REVIATION	ONS	
	/) .	20.20					MARTENS &	ASSOCIATES PTY LTI	o T						a Loa -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	A	B Rise	Pty Ltd					COMMENCED	07/02/2023	COMPLETED	07/0	2/202	23	R	EF	BH118
PR	OJEC	ст	Seotech	nical an	d ASS Assessment				LOGGED	AK / TR	CHECKED	RE					
SIT	E	2	63, 271	, 293, 3	21 Gan Gan Rd, Anna	а Ва	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss		She		1 OF 1 NO. P2208888
EQI	JIPME	NT			4WD truck-mounted hydr	aulic	drill rig	3	LONGITUDE	152.101463	RL SURFACE	0.73	3 m			TUM	AHD
EXC	:AVA	TION E	IMENSI	ONS .	Ø100 mm x 4.00 m depth	1			LATITUDE	-32.76705	ASPECT	Nort	:h		SLO	OPE	<5%
		Dril	ling		Sampling				•	F	ield Material D		_			<u>'</u>	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL 0.73	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS T CLASSIFICATION		OCK MATERIAL DESC			MOISTURE	CONSISTENCY	MARINE DE	ADI OBSE	CTURE AND DITIONAL ERVATIONS
			-	00	0.2/S/1 D 0.20 m			Cn	silly CLAY, nigh pia	sticity; brown, grey; trace	e sand and organi	us.				00110	
			=		0.5/S/1 D 0.50 m		X	*				(-	M < <pl< td=""><td>)</td><td></td><td></td><td></td></pl<>)			
			1	1.20 -0.47	1.0/S/1 D 1.00 m		× >	CH S				_		VS			
		Inflow	-		1.5/S/1 D 1.50 m		X >	X	, , , , , ,	,,, 3,			M (<pl) — —</pl) 				
AD/V	L		2		2.0/S/1 D 2.00 m		X	*					М				
			_		2.5/S/1 D 2.50 m			X					(>PL)	F 			
			3	3.00 -2.27	3.0/S/1 D 3.00 m		×	sc (Clayey SAND; fine t	to medium grained; pale	 grey.	_		St			
			-		3.5/S/1 D 3.50 m								w	L and MD			
			4 - -	4.00	4.0/S/1 D 4.00 m				Hole Terminated at Target depth reach								
			- 5 —														
			- -														
			6														
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																
	/	2	rt	o n	c			Suite		ASSOCIATES PTY LTI St. Hornsby, NSW 2077				Ξn	ginee	rin	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

Engineering Log - TEST

CLI	ENT	Α	B Rise	Pty Ltd					COMMENCED	07/02/2023	COMPLETED	07/0)2/20	23	REF BH119
PR	OJEC	ст	Seotech	nical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE			
SIT	E	2	63, 271	, 293, 3	321 Gan Gan Rd, Anna	а Ва	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss		Sheet 1 OF 1 PROJECT NO. P2208888
EQI	JIPME	NT			4WD truck-mounted hydr	aulic	drill rig	ı	LONGITUDE	152.10021	RL SURFACE	0.8	m		DATUM AHD
EXC	CAVA	TION E	DIMENSI	ONS	Ø100 mm x 3.00 m depth	1			LATITUDE	-32.769245	ASPECT	Sou	ıth		SLOPE <5%
			ling		Sampling				•	F	ield Material D		r –		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			-	0.80	0.2/S/1 D 0.20 m			CI- CH	TOPSOIL: Silty CLA grey; with organics.	Y; medium to high plastio	city; brown, dark	(M < <pl< td=""><td>.)</td><td>TOPSOIL -</td></pl<>	.)	TOPSOIL -
			=	0.50 0.30	0.5/S/1 D 0.50 m		/// 	CI- CH	Silty CLAY; medium sand.	to high plasticity; grey; tr	 ace fine grained			vs	MARINE DEPOSITS
			1		1.0/S/1 D 1.00 m		x > > >	X					M (<pl)< td=""><td></td><td>-</td></pl)<>		-
AD/V	L		-	1.50 -0.70	1.5/S/1 D 1.50 m				Sand increasing with	h depth.					- -
		Inflow	2	2.00 -1.20	2.0/S/1 D 2.00 m 2.1/S/1 D 2.10 m			SP	SAND; fine grained;	grey; trace silt.	. — — — —			F VL -	
Ì			-										М	L	-
			-3	3.00	3.0/S/1 D 3.00 m				Hole Terminated at	3.00 m				L - MD	-
			-						Hole Terminated at (Target depth reach	ed)					-
			-												-
			4												-
			-												-
			5												-
			<u>-</u>												-
			6												-
			-												-
					EXCAVATION LOG TO) BE	REA	DINC	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	AND	ABB	REVIATIONS
	/		2	.	_			Suit		ASSOCIATES PTY LTD St. Hornsby, NSW 2077			1	En	gineering Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	ENT	A	B Rise	Pty Ltd					COMMENCED	07/02/2023	COMPLETED	07/0	02/202	23	RE	F	BH120
PR	OJEC	т	Seotech	nical an	d ASS Assessment				LOGGED	AK / TR	CHECKED	RE					
SIT	E	2	63, 271	, 293, 3	21 Gan Gan Rd, Ann	а Ва	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss		Sheet	CT N	1 OF 1 IO. P2208888
EQI	JIPME	:NT			4WD truck-mounted hydronic and the state of	raulic	drill rig	1	LONGITUDE	152.101647	RL SURFACE	0.8 r	m		DATU		AHD
EXC	CAVAC	ION E	IMENSI	ONS .	Ø100 mm x 4.00 m depti	1			LATITUDE	-32.770316	ASPECT	Nort	th		SLOPI	=	<5%
		Dril	ling		Sampling				<u>'</u>	F	ield Material D	escr	iptio	n	<u>'</u>		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL 0.80	SAMPLE OR FIELD TEST	RECOVERED	SRAPHIC LOG	USCS / ASCS T CLASSIFICATION		OCK MATERIAL DESC			MOISTURE	CONSISTENCY DENSITY		ADD BSEF	TURE AND ITIONAL RVATIONS
			-		0.2/S/1 D 0.20 m		> >	CH	,		,						
			=		0.5/S/1 D 0.50 m							(M < <pl< td=""><td>) VS</td><td></td><td></td><td></td></pl<>) VS			
		\bigvee woljul	1	1.00 -0.20	1.0/S/1 D 1.00 m			CH \$	Silty CLAY; high pla	sticity; grey.		_					-
			-		1.5/S/1 D 1.50 m							,	M (<pl)< td=""><td></td><td></td><td></td><td></td></pl)<>				
AD/V	L		2	2.00 -1.20	2.0/S/1 D 2.00 m			CH S	Sandy CLAY; high p	olasticity; grey.				F VS			-
			_	2.50 -1.70	2.5/S/1 D 2.50 m			SC (Clayey SAND; fine t	o medium grained; grey.		_		F_			
			3 —		3.0/S/1 D 3.00 m								W	L 			-
	3.5/S/1 D 3.50 m																
			4	4.00	3.9/S/1 D 3.90 m												
	4.00 S.9.0 II D 4.00 m Hole Terminated at 4.00 m (Target depth reached)																
			6														
,		EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS															
	/			3.3.5					MARTENS &	ASSOCIATES PTY LTI						inc	a Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

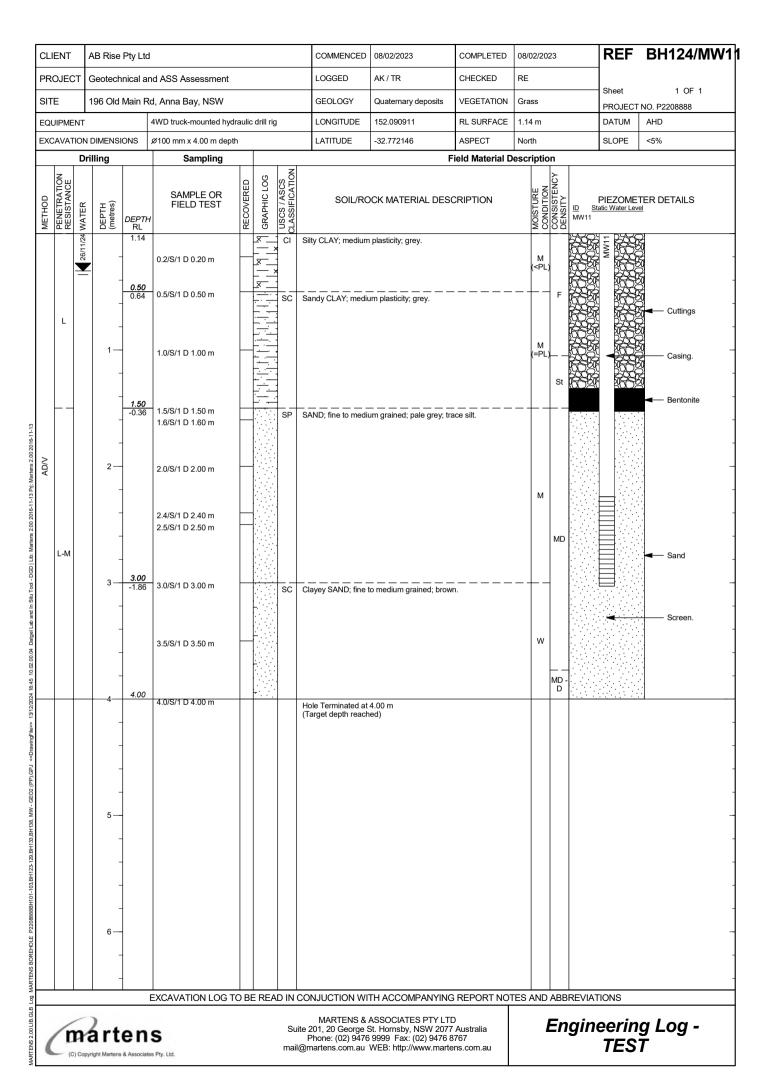
CL	IENT	Α	AB Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/02	2/20:	23		REF	BH121
PR	OJE	ст с		nical an	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE					
SIT	Έ	2	63, 271	, 293, 3	321 Gan Gan Rd, Anna	а Ва	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gras	s			Sheet	1 OF 1 NO. P2208888
EQ	UIPME	L ENT			4WD truck-mounted hydr	aulic	drill rig	ı	LONGITUDE	152.100112	RL SURFACE	0.98	m			DATUM	AHD
EXC	CAVA	TION E	DIMENSI	ONS	Ø100 mm x 4.00 m depth	1			LATITUDE	-32.771047	ASPECT	Sout	h			SLOPE	<5%
		Dril	lling		Sampling					Fi	ield Material D	escri	ptic	n	'		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	TO THE	CONDITION	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
				0.98			<u>×</u>	СН	Silty CLAY; high pla	sticity; grey brown; with o	rganics; trace sar			St	MARINE	DEPOSIT	S
			-		0.2/S/1 D 0.20 m		×					(<	M <pl< td=""><td></td><td></td><td></td><td></td></pl<>				
			- - -	0.50 0.48	0.5/S/1 D 0.50 m			СН	Sandy CLAY; high p	olasticity; grey.		_					
			1		1.0/S/1 D 1.00 m							(:	M =PL)			-
		Inflow	-		1.50/S/1 D 1.50 m									-			
AD/V	L		2		2.0/S/1 D 2.00 m									vs			
			- - -		2.5/S/1 D 2.50 m							(:	M >PL)			
-			3 —		3.0/S/1 D 3.00 m												-
			- - -		3.5/S/1 D 3.50 m												
			4	4.00	4.0/S/1 D 4.00 m				Hole Terminated at (Target depth reach								
			5 														
			6														
			-		EVOAVATION I CO T		- D-	Division	OON III OTI OO OO	TIL ACCOMPANY	DEDORT		NC	ABE	DEV// * ~	IONIC	
\vdash					EXCAVATION LOG TO	JBE	REA	או ח (CONJUCTION WI	I H ACCOMPANYING	KEPORT NOT	ES A	ND	ABB	KEVIAT	IONS	
	/	n	rte	en	c			Suit	te 201, 20 George S	ASSOCIATES PTY LTD St. Hornsby, NSW 2077	Australia			En	gine	erin	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	IENT	Į,	AB Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/	02/202	23		REF	BH121/M\	N 1
PR	OJEC	ст	Geotech	nical a	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE						
SIT	E	1	263, 271	, 293,	321 Gan Gan Rd, Ann	a Ba	ay, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ISS			Sheet	1 OF 1 NO. P2208888	
EQ	UIPME	L ENT			4WD truck-mounted hyd	raulio	drill rig	1	LONGITUDE	152.100112	RL SURFACE	0.9	8 m			DATUM	AHD	
			DIMENSI		Ø100 mm x 4.00 m dept				LATITUDE	-32.771047	ASPECT	Sou	uth			SLOPE	<5%	
		Dri	lling		Sampling					F	ield Material D)esci	riptio	n				
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY	ID St.	PIEZOME atic Water Leve	TER DETAILS 원	
			-	0.98	0.2/S/1 D 0.20 m		x		Silty CLAY; high pla	sticity; grey brown; with o	rganics; trace sar		M (< <pl)< th=""><th>St)</th><th></th><th>MW10</th><th>2 0 2 2 2</th><th>-</th></pl)<>	St)		MW10	2 0 2 2 2	-
		26/11/24	_	0.50 0.48	0.5/S/1 D 0.50 m		×	СН	Sandy CLAY; high p	olasticity; grey.	. — — — —	· — ·					0 2 0 2 2 2	
			1		1.0/S/1 D 1.00 m								M (=PL)				Casing.	=
			- -		1.50/S/1 D 1.50 m													
AD/V	L		2		2.0/S/1 D 2.00 m									VS				-
			-		2.5/S/1 D 2.50 m								M (>PL)		15521		()	
			3		3.0/S/1 D 3.00 m											4	Sand.	
			-		3.5/S/1 D 3.50 m													
			4	4.00	4.0/S/1 D 4.00 m		<u></u>		Hole Terminated at (Target depth reach							<u></u> - 변호	<u>: </u>	
			-															
			5 — -															
			- -															
			6															
	1		<u> </u>	<u> </u>	LEXCAVATION LOG T	ОВ	E REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NO	TES.	AND	ABB	REVIAT	IONS		
1	/r	n	art	۵n	e			Suit	e 201, 20 George S	ASSOCIATES PTY LTE	Australia		E	Ξn	gin	eerin	g Log -	

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au Engineering Log -TEST

CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/0	2/20	23		REF	BH122
PR	ROJEC	ст с	eotech	nical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE					
SIT	ΓE	2	63, 271	, 293, 3	321 Gan Gan Rd, Ann	а Ва	y, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss			Sheet	1 OF 1 NO. P2208888
EQ	UIPME	L ENT			4WD truck-mounted hydr	aulic	drill rig	ı	LONGITUDE	152.09304	RL SURFACE	0.51	n			DATUM	AHD
EX	CAVA	TION [DIMENSI	ONS	Ø100 mm x 4.00 m depth	1			LATITUDE	-32.77021	ASPECT	Nort	h			SLOPE	<5%
		Dril	lling		Sampling					Fi	ield Material D	escr	iptic	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
				0.50			<u>× </u>		Silty CLAY; high pla	sticity; dark grey; with org	janics.				MARINE	DEPOSIT	S
				1	0.2/S/1 D 0.20 m		x						M < <pl< td=""><td></td><td></td><td></td><td></td></pl<>				
			- - -		0.5/S/1 D 0.50 m		×							S			
			1		1.0/S/1 D 1.00 m		<u>x _ x</u> _ x						M (<pl)< td=""><td></td><td></td><td></td><td></td></pl)<>				
		Inflow	_		1.5/S/1 D 1.50 m		— x — x							_			
AD/V	L		2—		2.0/S/1 D 2.00 m		x							F			
			- - -	2.50 -2.00 2.70 -2.20	2.5/S/1 D 2.50 m		X X X X X X X X _		Trace sand.				M (>PL))			
			3—		3.0/S/1 D 3.00 m			СН	Sandy CLAY; high p	lasticity; grey.				F - St	t		
			=	3.20 -2.70	_			sc	Clayey SAND; med	ium grained; brown; with	silt.			_	-		
			- - -		3.5/S/1 D 3.50 m								W	MD			
			——4— - -	4.00	4.0/S/1 D 4.00 m		<u> </u>		Hole Terminated at (Target depth reach								
			_														
			5—														
			- - 														
			6														
<u></u>		ш			LEXCAVATION LOG TO) DBE	REA	D IN C	CONJUCTION WIT	TH ACCOMPANYING	REPORT NOT	ΓES <i>F</i>	AND	ABB	REVIATI	ONS	
	/	n	rt	en	9			Suit	te 201, 20 George S	ASSOCIATES PTY LTD St. Hornsby, NSW 2077	Australia			En	gine	erin	g Log -

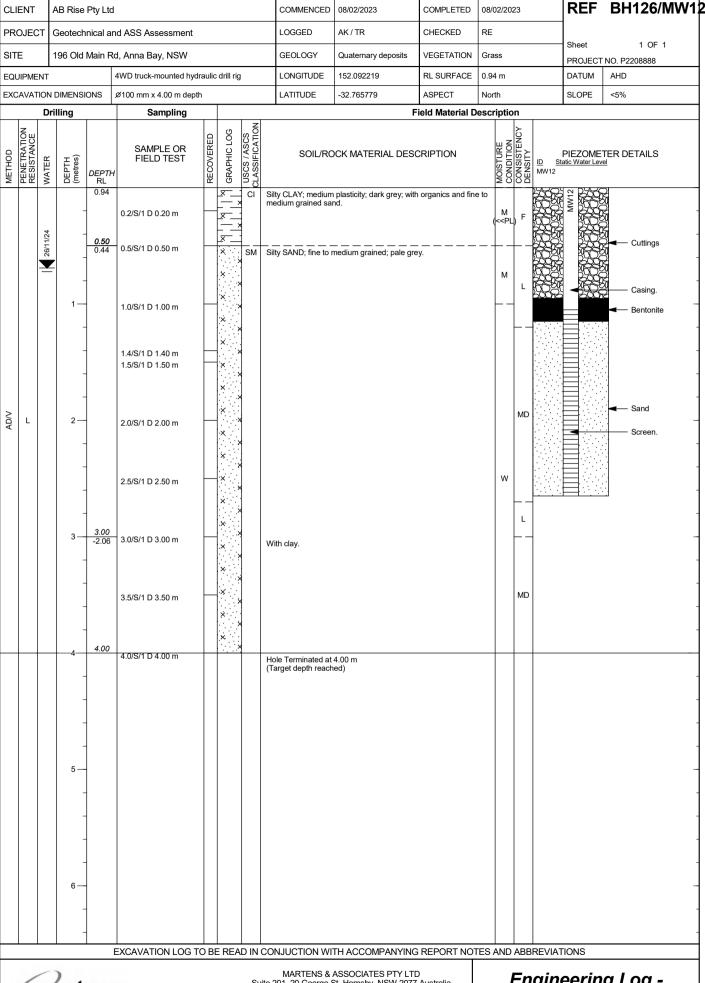

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	ENT	A	B Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/0)2/202	23	R	EF	BH123
PR	OJEC	т	Seotechi	nical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE					
SIT	E	1	96 Old I	Main Ro	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss		She		1 OF 1 NO. P2208888
EQ	JIPME	NT			4WD truck-mounted hyd	aulic	drill rig	1	LONGITUDE	152.092433	RL SURFACE	0.8	m			TUM	AHD
EXC	CAVAC	ION E	IMENSI	ONS	Ø100 mm x 4.00 m depti	1			LATITUDE	-32.77197	ASPECT	Sou	th		SLC	OPE	<5%
		Dril	ling		Sampling	_			•	F	ield Material D		_		•		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL 0.80	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS T CLASSIFICATION		OCK MATERIAL DES			MOISTURE	CONSISTENCY DENSITY		ADI OBSE	CTURE AND DITIONAL RVATIONS
			-		0.2/S/1 D 0.20 m			CH	Only OLAT, medium	no nigri piasiloty, dank g	rcy, with organics						-
			-		0.5/S/1 D 0.50 m								M (<pl)< td=""><td>F</td><td></td><td></td><td></td></pl)<>	F			
		\int woljul	1	1.00 -0.20	1.0/S/1 D 1.00 m			CI- CH	Silty CLAY; medium medium grained sal	to high plasticity; dark g	rey; with fine to						-
			- - -		1.5/S/1 D 1.50 m												
AD/V	L		2		2.0/S/1 D 2.00 m								M (>PL)	St			-
			3-	3.00 -2.20	3.0/S/1 D 3.00 m			SC	Clavey SAND: fine	to medium grained; brow							-
			-	3.50 -2.70	0.51011.0.0.50				Olayby Oniver, line i	o mediani grained, brow			W	MD			
			-	-2.70 4.00	3.5/S/1 D 3.50 m				Becoming pale grey	with depth.			vv	D			
			-4 4	7.00	4.0/S/1 D 4.00 m		<u> </u>		Hole Terminated at (Target depth reach								
			5														-
			6														-
L			-														
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Engineering Log -																

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

PROJECT Control and ASS Assessment CoSSD AN TR	CLI	ENT	/	AB Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/02/20	23	REF BH124	
STEEL 190 Cell favils Rd, James Bay, NSW CSC, DATE CSC, DA	PR	DJEC	т	Geotech	nical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE			
### PROPRIETY 4400 Individual styles and set (by) 1.0400.00	SIT	Ξ	1	196 Old	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Grass			
Drilling Sampling	EQL	IIPME	NT			4WD truck-mounted hydra	aulic	drill rig	1	LONGITUDE	152.090911	RL SURFACE	1.14 m			
STRUCTURE AND ADDITIONAL DESCRIPTION	EXC	AVAT	ION	DIMENSI	IONS	Ø100 mm x 4.00 m depth				LATITUDE	-32.772146	ASPECT	North		SLOPE <5%	
1.14			Dri	illing		Sampling					Fi	ield Material D		_		
1.14	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
Column										Silty CLAY; medium	plasticity; grey.				MARINE DEPOSITS	
CL Sardy CLAY, medium plasticity, grey. 1.09/1 D 1.09 in				-	0.50	0.2/S/1 D 0.20 m		>					M (<pl< td=""><td>)</td><td></td></pl<>)		
1.05/1 D 1.50 m 1.55/1 D 1.50 m 2.05/1 D 1.50 m 2.05/1 D 1.50 m 2.05/1 D 2.00 m 2.05/1 D 2.00 m 2.05/1 D 2.00 m 3.00 3.00 3.00 3.05/1 D 3.00 m 3.00 3.00/1 D 3.00 m 3.		L		-	0.64	0.5/S/1 D 0.50 m			CI	Sandy CLAY; mediu	ım plasticity; grey.			F		
150 1 5/S/I D 150 m				1-		1.0/S/1 D 1.00 m			-) - -	<u>-</u>	
1				-	1.50 -0.36	1.5/S/1 D 1.50 m			SP	- — — — — — SAND: fine to mediu		 ce silt.		and		
2.4.S/1 D 2.40 m	_	1.6/S/1 D 1.60 m 2.0/S/1 D 2.00 m 2.0/S/1 D 2.00 m														
L.M. 3	AD/	2.4/S/1 D 2.40 m														
3 300 3.0S/1 D 3.00 m SP Clayey SAND; fine to medium grained; brown. 3.5S/1 D 3.50 m MD		2.4/S/1 D 2.40 m 2.5/S/1 D 2.50 m														
4.00 4.00/1 D 4.00 m Hole Terminated at 4.00 m (Target depth reached) 5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS		L-M 3 3.00 3.00 4 D 3.00 -														
4-00 4.0/S/1 D 4.00 m Hole Terminated at 4.00 m (Target depth reached) 5				-	_	3 5/S/1 D 3 50 m							w	MD		
4.00 4.00S/T D 4.00 m Hole Terminated at 4.00 m (Target depth reached) 5— 6— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-	_	0.0/0/11 2 0.00 111								MD -		
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				44	4.00	4.0/S/1 D 4.00 m		-								
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-	1											
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-	-											
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-	1											
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				5 —	1										-	
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-	-											
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-	-											
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				_												
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-												
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				6-											_	
1.3621.7																
1.3621.7																
1.3621.7				_	1	EYCANATION LOC TO	רם (Divio	ON ILICTION VA		DEDORT NOT	TEQ AND	ADD	PEVIATIONS	
IVIANTENO & AUGUCIATED I I III II II III II III III III III)		LACAVATION LOG TO	וט י	_ 1\E/4	יי ווא ט						aineerina l oa -	

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au



CLI	ENT	A	AB Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/02/20	23	REF BH125		
PR	OJEC	т	Geotech	nical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE				
SIT	E	1	196 Old	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Grass		Sheet 1 OF 1 PROJECT NO. P2208888		
EQI	JIPME	NT			4WD truck-mounted hydra	aulic	drill rig	ı	LONGITUDE	152.09405	RL SURFACE	0.9 m		DATUM AHD		
EXC	AVAT	ION I	DIMENSI	ONS	Ø100 mm x 4.00 m depth				LATITUDE	-32.766501	ASPECT	South		SLOPE <5%		
		Dri	lling		Sampling				•	Fi	ield Material D	escriptio	n	•		
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
			-	0.90	0.2/S/1 D 0.20 m		× ×	CI :	Silty CLAY; medium nedium grained sar	plasticity; dark grey; with nd.	organics and fine			MARINE DEPOSITS		
			-	0.50 0.40	0.5/S/1 D 0.50 m		×	SM :	Silty SAND; fine to r	nedium grained; pale gre	y.					
		Inflow	1		0.9/S/1 D 0.90 m 1.0/S/1 D 1.00 m		×						VS -	- -		
			-		1.5/S/1 D 1.50 m		× × ×					w	S	·		
AD/V	2.0/S/1 D 2.00 m															
		2.5/S/1 D 2.50 m 2.70 -1.80 3.0/S/1 D 3.00 m 2.5/S/1 D 2.50 m X SC Clayey SAND; fine to medium grained; grey.														
			-	3.50 -2.60	3.5/S/1 D 3.50 m		× × ×	SM :	Silty SAND; fine to n	nedium grained; brown.			MD			
	-		-4	4.00	4.0/S/1 D 4.00 m		×		Hole Terminated at Target depth reach							
			-													
			5											-		
			-													
			-													
			-													
			6-											-		
			-													
			-													
					 EXCAVATION LOG TO	 BI	L E RFA	DINC	ONJUCTION WIT	TH ACCOMPANYING	REPORT NOT	ES AND	ABRI	REVIATIONS		
)							ASSOCIATES PTY LTD				aineerina Loa -		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT		A	AB Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/02/2023		REF BH126
PRO	JEC	т	Geotech	nical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE		
SITE	Ξ	1	196 Old	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Grass		Sheet 1 OF 1 PROJECT NO. P2208888
EQU	IPME	NT			4WD truck-mounted hydraulic drill rig			LONGITUDE	152.092219	RL SURFACE	0.94 m		DATUM AHD	
EXC	AVAT	ION I	DIMENSI	ONS	Ø100 mm x 4.00 m depth			LATITUDE	-32.765779	ASPECT North			SLOPE <5%	
		Dri	lling		Sampling			•	Field Material Description			,		
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			-	0.94	0.2/S/1 D 0.20 m		×	CI	Silty CLAY; medium medium grained sar	plasticity; dark grey; with nd.	organics and fine			MARINE DEPOSITS
			-	0.50 0.44	0.5/S/1 D 0.50 m		× · · · · · · · · · · · · · · · · · · ·	SM :	Silty SAND; fine to n	 nedium grained; pale gre	 y.			
		Inflow	1		1.0/S/1 D 1.00 m		× × ×					M 	L -	- - -
			-		1.4/S/1 D 1.40 m		× ,	.						
			-	-	1.5/S/1 D 1.50 m		× · · · · · · · · · · · · · · · · · · ·							
AD/V	L		2	-	2.0/S/1 D 2.00 m		× × ×						MD	- -
			-		2.5/S/1 D 2.50 m		× , × ,					W		· ·
			3 —	3.00 -2.06	3.0/S/1 D 3.00 m		×	,	With clay.					<u>-</u>
			-		3.5/S/1 D 3.50 m		× ;						MD	
			4	4.00	4.0/S/1 D 4.00 m		× · · · · · · · · · · · · · · · · · · ·		Hole Terminated at Target depth reach					
			_	-										
			-	-										
			5—											-
			-											
			-											
			-	-										
			_											
			6											_
			"											
			-											
			-			L							<u></u>	
<u> </u>	,)		EXCAVATION LOG TO) Bl	E KEA	או עי C		TH ACCOMPANYING ASSOCIATES PTY LTD				aineering Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

Engineering Log - TEST

CLI	ENT	A	B Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/0	2/20	23	REF BH127	
PR	OJEC	ст С	Seotech	nical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE				
SIT	Έ	1	96 Old I	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss		Sheet 1 OF 1 PROJECT NO. P2208888	
EQI	JIPME	NT			4WD truck-mounted hydr	aulic	drill rig	J	LONGITUDE	152.91572	RL SURFACE	0.9 r	n		DATUM AHD	
EXC	CAVAC	LION E	DIMENSI	SNC	Ø100 mm x 4.00 m depth	1			LATITUDE	-32.76918	ASPECT	Sout	th		SLOPE <5%	
			ling		Sampling	_		-		F	ield Material D		_			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0.90				SC	Sandy CLAY; mediu	ım to high plasticity; dark	grey; with organic			s	MARINE DEPOSITS	
			-		0.2/S/1 D 0.20 m										-	
			-		0.5/S/1 D 0.50 m										-	
			-		0.0,0,1 2 0.00 111								М	VS	=	
			_									((<pl)< td=""><td></td><td>-</td></pl)<>		-	
			1		1.0/S/1 D 1.00 m										_	
			_				-							S	-	
		Inflow		1.50 -0.60	1.5/S/1 D 1.50 m		 ×	SM	Silty SAND; fine to n	 nedium grained; grey, pa	 le grey.	-+		-		
2																
AD/V	₹ L 2														=	
			_				× .								-	
			_				×	.							-	
			-		2.5/S/1 D 2.50 m		× · · · · ·								-	
			_				× .						W	L - MD	-	
			3		3.0/S/1 D 3.00 m		×									
			ŭ		3.0/S/1 D 3.00 m		×									
							×]							_	
				3.50 -2.60	3.5/S/1 D 3.50 m		×		Decemina nole man	and braves					-	
			=	2.00			×	•	Becoming pale grey	and brown.					-	
			-				× :	1							-	
\vdash			4	4.00	4.0/S/1 D 4.00 m		>		Hole Terminated at	4.00 m						
			-						(Target depth reach						-	
			=												-	
			_												_	
			[_													
			5 —													
			-													
			-												-	
			-												-	
			-												-	
			6												-	
			=												_	
_					 EXCAVATION LOG TO	 D BF	REA	D IN (CONJUCTION WIT	TH ACCOMPANYING	REPORT NOT	ΓES A	AND	ABBI	REVIATIONS	
	/) rt						MARTENS & A	ASSOCIATES PTY LTD St. Hornsby, NSW 2077)				gineering Log -	

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	A	AB Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/0)2/20	23	REF BH128
PR	OJEC	ст	Seotech	nical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE			
SIT	E	1	96 Old I	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss		Sheet 1 OF 1 PROJECT NO. P2208888
EQI	JIPME	NT			4WD truck-mounted hydr	aulic	drill rig	1	LONGITUDE	152.092963	RL SURFACE	0.9	m		DATUM AHD
EXC	AVA	TION [DIMENSI	ONS	Ø100 mm x 4.00 m depth	1			LATITUDE	-32.767996	ASPECT	Sou	th		SLOPE <5%
		Dri	lling		Sampling				•	F	ield Material D		_		
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			_	0.90	0.2/S/1 D 0.20 m		× .	SM	Silty SAND; fine to r	nedium grained; dark gre	y and brown.			L	MARINE DEPOSITS
			=		0.5/S/1 D 0.50 m		×						М		-
		Inflow	1	1.00 -0.10	1.0/S/1 D 1.00 m		×. ;	sc	Clayey SAND; fine t	o medium grained; grey b	 prown.			VL	- - -
!			-	1.70 -0.80	1.5/S/1 D 1.50 m										-
AD/V	L		2	-0.80	2.0/S/1 D 2.00 m		× ,	SM	Silty SAND; fine to r	nedium grained; pale gre	y.			L - MD	-
			-		2.5/S/1 D 2.50 m		× ;						W		-
			3		3.0/S/1 D 3.00 m		× ,								- - -
			-	3.50 -2.60	3.5/S/1 D 3.50 m		×		Becoming pale brow	vn.				L	-
				4.00			×]							
			4 _ _ _		4.0/S/1 D 4.00 m				Hole Terminated at (Target depth reach						-
			5—												- - -
			6-												- -
			-												-
_					EXCAVATION LOG TO) BI	E REA	DIN	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ΓES A	AND	ABB	REVIATIONS
	/) rt	.	_			Su		ASSOCIATES PTY LTD St. Hornsby, NSW 2077			ı	En	gineering Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT		AB Rise	Pty Ltd					COMMENCED	08/02/2023	COMPLETED	08/02/	202	23	KEF	BH129	
PR	OJEC	т	Geotech	inical ar	nd ASS Assessment				LOGGED	AK / TR	CHECKED	RE			Sheet	1 OF 1	
SIT	Ε		196 Old	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Grass			PROJEC [*]	T NO. P2208888	
EQL	JIPME	NT			4WD truck-mounted hydra	aulio	drill rig	1	LONGITUDE	152.09346	RL SURFACE	0.84 m	1		DATUM	AHD	
EXC	AVAT	ION	DIMENS	ONS	Ø100 mm x 4.00 m depth				LATITUDE	-32.768997	ASPECT	South			SLOPE	<5%	
			illing		Sampling					Fi	ield Material D		\neg				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONDITION	CONSISTENCY DENSITY	AE OBS	JCTURE AND DDITIONAL ERVATIONS	
			-	0.84	0.2/S/1 D 0.20 m 0.5/S/1 D 0.50 m		x	CI- CH	Silty CLAY; medium organics; trace san	i to high plasticity; pale gro	ey, brown; with	N (<<	И :PL)	F 	MARINE DEPOSIT	'S	
			1	1.00 -0.16	1.0/S/1 D 1.00 m		x	SC	Sandy CLAY; media	um to high plasticity; pale	grey, brown.		M PL)	S			- -
		Inflow	-	1.50 -0.66	1.5/S/1 D 1.50 m		× · · · · · · · · · · · · · · · · · · ·	SM	Silty SAND; fine to	medium grained; pale gre	y.						
AD/V	L		2-		2.0/S/1 D 2.00 m		×							MD			-
			-		2.5/S/1 D 2.50 m		×					v	٧				
			3	3.00 -2.16	3.0/S/1 D 3.00 m		× · · · · · · · · · · · · · · · · · · ·		Becoming dark gre	<i>j</i> .				L			
			-	4.00	3.5/S/1 D 3.50 m		× · · · · · · · · · · · · · · · · · · ·										
			-		4.0/S/1 D 4.00 m				Hole Terminated at (Target depth reach								-
			5														-
			-														-
			-	-													-
			6	-													-
			1	<u> </u>	 EXCAVATION LOG TO) P	F RF^	D INI	CONJUCTION M/		REPORT NO	TES AN	ID -	ARRI	REVIATIONS		
)				/	111		ASSOCIATES PTY LTD					ainoorin		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

PROJECT SITE EQUIPMENT EXCAVATION	╀	eotech	nical ar	nd ASS Assessment											REF	
EQUIPMENT	19			iu ASS Assessment				LOGGED	AK / TR	CHECKED	RE					
		96 Old 1	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss			Sheet	1 OF 1 NO. P2208888
	T			4WD truck-mounted hyd	raulio	drill rig		LONGITUDE	152.09346	RL SURFACE	0.84	m			DATUM	AHD
		IMENSI	ONS	Ø100 mm x 4.00 m dept	h			LATITUDE	-32.768997	ASPECT	Sou	th			SLOPE	<5%
	Drill	ing		Sampling					F	ield Material D	escr	iptio	n			
METHOD PENETRATION RESISTANCE WATER	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY	P ID Stati MW13	IEZOMET C Water Leve	TER DETAILS
		=	0.84	0.2/S/1 D 0.20 m		x x	CI-	Silty CLAY; medium organics; trace sand	to high plasticity; pale gr d.	ey, brown; with			F			200
J 26/11/24	26/11/24	-		0.5/S/1 D 0.50 m		X X					(M < <pl< td=""><td>) s</td><td></td><td></td><td></td></pl<>) s			
		1	1.00 -0.16	1.0/S/1 D 1.00 m			SC	Sandy CLAY; mediu	ım to high plasticity; pale	grey, brown.		— — M (<pl)< td=""><td>St</td><td></td><td></td><td>Cuttings</td></pl)<>	St			Cuttings
						SM	Silty SAND; fine to r	nedium grained; pale gre	 y.						Casing	
AD/V		2		2.0/S/1 D 2.00 m		× · · · · · · · · · · · · · · · · · · ·							MD			
		-		2.5/S/1 D 2.50 m		×						W				■ Bentonite
		3	3.00 -2.16	3.0/S/1 D 3.00 m		× · · · · · · · · · · · · · · · · · · ·		Becoming dark grey	<i>i</i> .							Screen
		_		3.5/S/1 D 3.50 m		× × × × × ×							L			Sand
		- 4 -	4.00	4.0/S/1 D 4.00 m		 * ::: ::::>		Hole Terminated at (Target depth reach								
		-														
		5														
		-														
		6 —														
				EXCAVATION LOG T			<u> </u>	ON III 10716	TIL 4 00 00 15	DED02=:::			<u> </u>	DE: # = = 1	2010	

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au Engineering Log -TEST

CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	12/04/2024	COMPLETED	12/0	4/20	24		REF	BH133
PR	OJE	ст	Geotech	nical ar	d ASS Assessment				LOGGED	ws	CHECKED	RE					
SIT	E	1	196 Old	Main Ro	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss			Sheet	1 OF 1 NO. P2208888
EQ	UIPME	L ENT			4WD ute-mounted hydra	ulic d	rill rig		LONGITUDE	152.0926	RL SURFACE	0.62	? m			DATUM	AHD
EX	CAVA	TION [DIMENSI	ONS	4.00 m depth				LATITUDE	-32.76972	ASPECT	Nort	:h			SLOPE	<5%
		Dri	lling		Sampling				-	F	ield Material D	escri	iptic	n		!	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
METH	PEN PESI	Inflow. WATE	1—————————————————————————————————————	0.62 0.62 0.80 -0.18 1.90 -1.28	0.4-0.5/S/1 D 0.40-0.50 m 0.9-1.0/S/1 D 0.90-1.00 m 1.4-1.5/S/1 D 1.40-1.50 m 1.9-2.0/S/1 D 1.90-2.00 m 2.5-2.6/S/1 D 2.50-2.60 m 3.0-3.1/S/1 D 3.00-3.10 m 3.5-3.6/S/1 D 3.50-3.60 m	RECC	OBANTAL STATE OF THE CONTRACT	CI	Sandy CLAY; low pl	nedium plasticity; brown. grained; dark grey.			MOON M(<pl)< th=""><th></th><th>MARIN</th><th>E DEPOSIT:</th><th></th></pl)<>		MARIN	E DEPOSIT:	
			6														
,				-	EXCAVATION LOG T	O BE	REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NO	TES A	AND	ABB	REVIAT	TIONS	
	/r	n	art	en	S			Suit	e 201, 20 George S	ASSOCIATES PTY LTE	Australia			Εn	gin	eerin	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT	AB	Rise F	Pty Ltd					COMMENCED	12/04/2024	COMPLETED	12/0	04/20	24		REF	BH134	
PROJEC1	Γ Geo	techr	nical an	d ASS Assessment				LOGGED	ws	CHECKED	RE				-		
SITE	263	, 271,	293, 3	21 Gan Gan Rd, Anna	а Ва	ıy, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss			Sheet	1 OF NO. P2208888	1
EQUIPMEN	NT		- 1	4WD ute-mounted hydrau	ulic d	rill rig		LONGITUDE	152.09706	RL SURFACE	0.83	3 m			DATUM	AHD	
EXCAVATION	ON DIM	ENSIC	ONS 4	4.00 m depth				LATITUDE	-32.76961	ASPECT	Nor	th			SLOPE	<5%	
	Drillin	g		Sampling					F	ield Material D	escr	iptio	n				
METHOD PENETRATION RESISTANCE	WATER	(metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS	
	Not Encountered WA:	1 2 3 3	0.70 0.13 1.50 -0.67 2.30 -1.47	0.4-0.5/S/1 D 0.40-0.50 m 0.9-1.0/S/1 D 0.90-1.00 m 1.4-1.5/S/1 D 1.40-1.50 m 2.0-2.1/S/1 D 2.00-2.10 m 2.4-2.5/S/1 D 2.40-2.50 m 3.0-3.1/S/1 D 3.00-3.10 m 3.5-3.6/S/1 D 3.50-3.60 m	NECESTRATE OF THE PROPERTY OF	80	CI CI SP	Silty CLAY; medium Clayey SAND; fine of Silty CLAY; medium	grained; brown; pale grey plasticity; dark grey. grained; dark grey; yellow			0M		MARIN	E DEPOSIT	S	
/20	2	rt	e n	EXCAVATION LOG TO) D BE	E REA		MARTENS & A	TH ACCOMPANYING ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9090 Fay: (12) 9476 8) Australia	res <i>i</i>					g Log -	-

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	12/04/2024	COMPLETED	12/0	04/20	24		REF	BH135
PR	OJE	ст с	 3eotechi	nical an	d ASS Assessment				LOGGED	ws	CHECKED	RE					
SIT	Έ	2	263, 271	, 293, 3	21 Gan Gan Rd, Anna	Bay,	NSV	Ν.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss			Sheet	1 OF 1 NO. P2208888
EQ	JIPME	L ENT			4WD ute-mounted hydrau	ılic drill	rig		LONGITUDE	152.09481	RL SURFACE	0.78	3 m			DATUM	AHD
EXC	CAVA	TION [DIMENSIO	SNC	4.00 m depth				LATITUDE	-32.76983	ASPECT	Nor	th			SLOPE	<5%
		Dril	lling		Sampling					F	ield Material D	escr	iptio	n	'		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
F		>		0.78	0.0-0.1/S/1 D 0.00-0.10 m			SP	Clayey SAND; fine o	grained; brown.					MARINE	DEPOSIT	S
		∆.∨	- - -	0.50 0.28	0.4-0.5/S/1 D - 0.40-0.50 m		— <u>: ×</u>	CI	Sandy Silty CLAY; n	nedium plasticity; dark gre	 ey.	. — -	M — — M (<pl)< th=""><th></th><th></th><th></th><th></th></pl)<>				
		Inflow.\vec{}	1		0.9-1.0/S/1 D 0.90-1.00 m	- X	.						М				-
AD/V	L		2	2 20	1.9-2.0/S/1 D 1.90-2.00 m								 (>PL)				
			- -	2.30 -1.52	2.4-2.5/S/1 D 2.40-2.50 m			SP	Clayey SAND; fine o	grained; grey.							
			3 —		2.90-3.00 m 3.4-3.5/S/1 D 3.40-3.50 m								W				
			-			-											
			-4	4.00	3.9-4.0/S/1 D 3.90-4.00 m	<u>+</u> .			Hole Terminated at (Target depth reach								
			5—														-
			6														-
,	1			E	L EXCAVATION LOG TO	BE F	REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ΓES	AND	ABB	LEVIAT	IONS	
	/r	n	arte	en	S			Sui	te 201, 20 George S	ASSOCIATES PTY LTD	Australia		ı	En	gine	erin	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	12/04/2024	COMPLETED	12/0	04/20	24		REF	BH136
PR	OJE	ст	Geotech	nical ar	nd ASS Assessment				LOGGED	ws	CHECKED	RE					
SIT	E	2	263, 271	, 293, 3	321 Gan Gan Rd, Ann	a Ba	ıy, NS	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss			Sheet	1 OF 1 NO. P2208888
EQ	UIPME	ENT			4WD ute-mounted hydra	ulic d	rill rig		LONGITUDE	152.0988	RL SURFACE	0.84	l m			DATUM	AHD
EX	CAVA	TION I	DIMENSI	ONS	4.00 m depth				LATITUDE	-32.76976	ASPECT	Sou	th			SLOPE	<2%
		Dri	lling		Sampling	_			<u>'</u>	F	ield Material D	escr	iptio	n		!	
МЕТНОВ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
MET	PEN	MATT	1— 1— 3— 4— 5— 6— 6—	0.60 0.24 1.20 -0.36	0.5-0.6/S/1 D 0.50-0.60 m 0.9-1.0S/1 D 0.90-1.00 m 1.5-1.6/S/1 D 1.50-1.60 m 2.0-2.1/S/1 D 2.00-2.10 m 3.0-3.1/S/1 D 3.00-3.10 m 3.5-3.6/S/1 D 3.50-3.60 m	REC.	WAD	CL S		4.00 m			NOO M(<pl)< th=""><th></th><th>MARIN</th><th>E DEPOSIT:</th><th></th></pl)<>		MARIN	E DEPOSIT:	
			_		EXCAVATION LOG T	 O BI	E REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ΓES A	AND	ABBI	REVIAT	TIONS	•
	/r	n	art	en	9			Suite	201, 20 George S	ASSOCIATES PTY LTD	Australia			En	gin	eerin	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	IENT	A	AB Rise	Pty Ltd					COMMENCED	12/04/2024	COMPLETED	12/0	04/20	24		REF	BH137
PR	OJEC	ст	Geotech	nical ar	nd ASS Assessment				LOGGED	ws	CHECKED	RE					
SIT	Έ	2	263, 271	, 293, 3	321 Gan Gan Rd, Ann	a Ba	y, NS\	W.	GEOLOGY	Quaternary deposits	VEGETATION	Gra	ss			Sheet	1 OF 1 NO. P2208888
EQ	JIPME	NT			4WD ute-mounted hydra	ulic d	Irill rig		LONGITUDE	152.09964	RL SURFACE	0.76	3 m			DATUM	AHD
EXC	CAVAC	TION [DIMENSI	ONS	4.00 m depth				LATITUDE	-32.7696	ASPECT	Sou	th			SLOPE	<2%
		Dril	lling		Sampling					Fi	ield Material D	escr	iptio	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS
AD/V MET	PEN T RES	TAW Validow	A 3 — 4 — 5 — 5 — 5 — 5 — 5 — 5 — 5 — 5 — 5	0.70 0.76 0.06	0.4-0.5/S/1 D 0.40-0.50 m 0.9-1.0/S/1 D 0.90-1.00 m 1.5-1.6/S/1 D 1.50-1.60 m 2.0-2.1/S/1 D 2.00-2.10 m 2.5-2.6/S/1 D 2.50-2.60 m 3.0-3.1/S/1 D 3.00-3.10 m 3.5-3.6/S/1 D 3.50-3.60 m	REC	*20	OSU CC CC		4.00 m	potlets.		NOO	CON	MARINE	DEPOSITS	
			6														
\vdash					EVOAVATION LOGIT			D 13.1	ON ILIOTION AT	THE A COOK AD A RIVER O	DEDODENCE	TEO.	1 N I D	A D.C.	DE: " * T:	ONC	
\vdash					EXCAVATION LOG T	OBE	_ KEA	אוו חי				ieo A					
	/	n	rt	en	S			Sui	te 201, 20 George S	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fav: (02) 9476.8	Australia		1	Εn	gine	erin	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	ENT	A	AB Rise	Pty Ltd					COMMENCED	12/04/2024	COMPLETED	12/0	4/20	24		REF	BH138
PR	OJEC	ст с	Geotech	nical ar	nd ASS Assessment				LOGGED	ws	CHECKED	RE					
SIT	E	1	96 Old	Main R	d, Anna Bay, NSW				GEOLOGY	Quaternary deposits	VEGETATION	Gras	ss		- 1	Sheet	1 OF 1 NO. P2208888
EQI	JIPME	L ENT			4WD ute-mounted hydra	ulic d	rill rig		LONGITUDE	152.09224	RL SURFACE	0.78	3 m			DATUM	AHD
EXC	:AVA	ΓΙΟΝ [DIMENSI	ONS	4.00 m depth				LATITUDE	-32.76949	ASPECT	Sou	th			SLOPE	<2%
		Dril	lling		Sampling					F	ield Material D	escr	iptio	n			
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS
F				0.78		Ī	<u>×</u> _		Silty CLAY; low plas	ticity; dark grey; trace roo	otlets.				MARINE	DEPOSIT	3
		Inflow.\\	- - - 1—	<u>0.60</u> 0.18	0.4-0.5/S/1 D 0.40-0.50 m 0.9-1.0/S/1 D 0.90-1.00 m			CI	Silty Sandy CLAY; n	nedium plasticity, dark bru	own.		M (<pl) — — M (>PL)</pl) 				- - - -
			-	<u>1.50</u> -0.72	1.5-1.6/S/1 D 1.50-1.60 m			SP (Clayey SAND; fine g	grained; grey.							-
AD/V	L		2-		2.0-2.1/S/1 D 2.00-2.10 m												-
-		2.4-2.5/S/1 D 2.40-2.50 m											w				- - -
			3		3.0-3.1/S/1 D 3.00-3.10 m												- - -
			-		3.5-3.6/S/1 D 3.50-3.60 m												-
			4	4.00	3.9-4.0/S/1 D 3.90-4.00 m												
			- - -						Hole Terminated at Target depth reach								-
			5 — -														- - -
			6														- - -
																	-
<u> </u>					EXCAVATION LOG TO			DING	ON III IOTION V	THE ACCOMPANIES	DEDOOT NO		\ N I C	A D.C.	DE\	IONIC	
	/r	n	art			ום כ	LINEA		MARTENS & A	ASSOCIATES PTY LTE St. Hornsby, NSW 2077) Australia	LO F					g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

Appendix C – DCP Test Results

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

Site	196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW	DCP Group Reference	P2208888JS03V01
Client	AB Rise Pty Ltd C/- DMPS	Log Date	13.09.2022 - 15.09.2022
Logged by	DS	Page	1 of 5
Checked by	WB	rage	1 01 3
Comments	DCP commenced from 50 mm bgl.		

TEST DATA

			TEST C	DATA			
Depth Interval (m)	DCP101 (BH101)	DCP102 (BH102)	DCP103 (BH103)	DCP104 (BH104)	DCP105 (BH106)	DCP107 (BH110)	
0.15	2	2	1	1	1	1	
0.30	4	2	4	1	2	3	
0.45	6	4	5	5	3	6	
0.60	7	2	4	6	3	6	
0.75	6	4	1	5	1	5	
0.90	5	3	2	3	1	2	
1.05	6	3	2	6	2	2	
1.20	5	3	2	6	1	3	
1.35	6	3	3	4	2	4	
1.50	4	5	2	5	1	6	
1.65	4	4	1	5	2	7	
1.80	5	5	3	4	8	8	
1.95	5	4	4	4	10	10	
2.10	4	4	3	4	9	15	
2.25	5	4	6	7	7	16	
2.40	4	6	7	10	7	15	
2.55	3	5	5	9	5	15	
2.70	5	7	5	10	7	16	
2.85	9	8	6	10	7	18	
3.00	9	7	5	9	7	18	
3.15	10	7	8	9	8	14	
3.30	10	10	7	8	10	12	
3.45	Terminated @ 3.35		Terminated @ 3.35		Terminated @ 3.35	Terminated @ 3.35	
0.43	m	Terminated @ 3.35 m	m	Terminated @ 3.35 m	m	m	
	111				111	111	

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.a

Site	196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW	DCP Group Reference	P2208888JS03V01
Client	AB Rise Pty Ltd C/- DMPS	Log Date	13.09.2022 - 15.09.2022 & 07.02.2023 - 08.02.2023
Logged by	Logged by DS/AK/TR Page Checked by WB		2 of 5
Checked by			2 01 3
Comments	DCP commenced from 50 mm bgl.	_	_

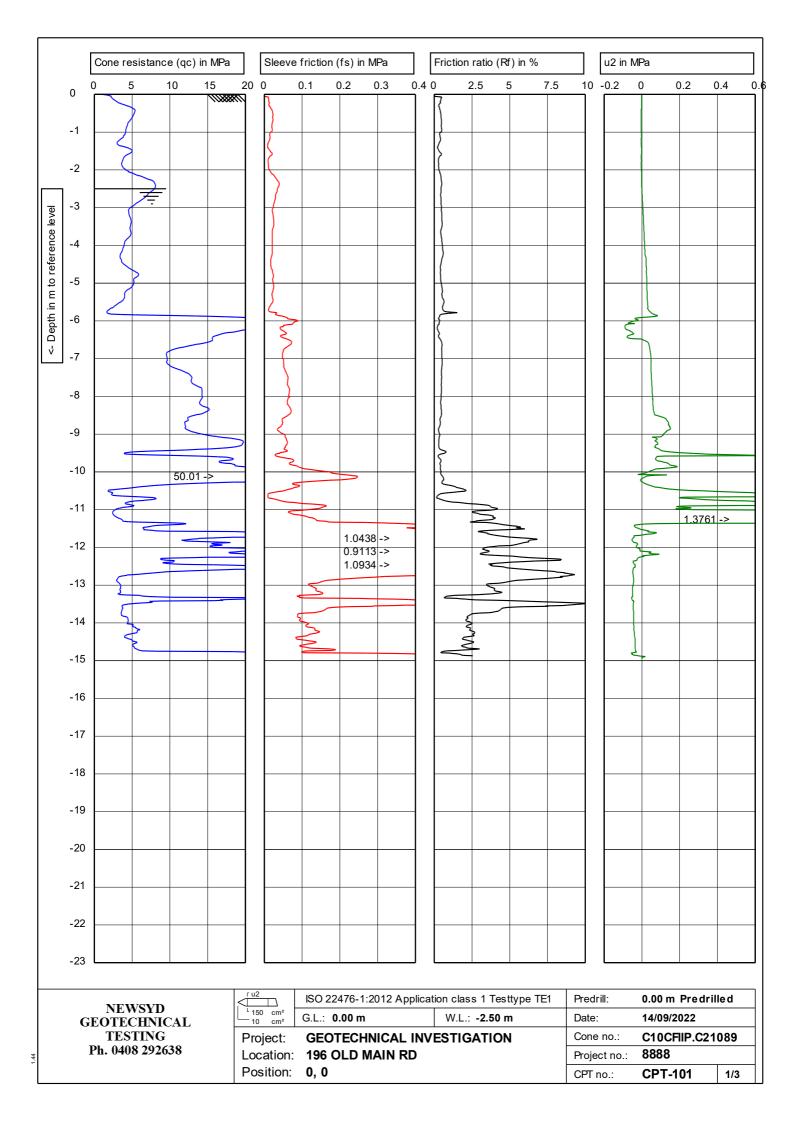
	TEST DATA							
Depth Interval (m)	DCP108 (BH111)	DCP109 (BH112)	DCP110 (BH115)	DCP111 (BH116)	DCP112 (BH117)	DCP113 (BH118)	DCP114 (BH119)	
0.15	1	Hammer weight	4	5	1	5	3	
0.30	1	1	3	4	Hammer weight	4	1	
0.45	3	4	Hammer weight	1	Hammer weight	3	Hammer weight	
0.60	3	3	Hammer weight	Hammer weight	Hammer weight	2	Hammer weight	
0.75	3	3	Hammer weight					
0.90	2	2	Hammer weight	Hammer weight	Hammer weight	1	Hammer weight	
1.05	3	3	Hammer weight					
1.20	4	3	Hammer weight					
1.35	3	4	Hammer weight					
1.50	2	6	Hammer weight	Hammer weight	Hammer weight	Hammer weight	1	
1.65	4	6	2	Hammer weight	Hammer weight	Hammer weight	4	
1.80	4	7	2	Hammer weight	Hammer weight	Hammer weight	4	
1.95	5	5	3	Hammer weight	Hammer weight	1	3	
2.10	5	4	3	3	Hammer weight	2	2	
2.25	6	5	2	3	1	2	1	
2.40	5	7	2	2	3	2	Hammer weight	
2.55	5	7	3	2	3	4	Hammer weight	
2.70	5	7	2	3	3	3	3	
2.85	5	7	3	3	3	6	4	
3.00	5	7	3	5	3	5	4	
3.15	6	6	3	4	4	4	4	
3.30	7	7	4	4	4	4	4	
3.45	Terminated @ 3.35	Terminated @ 3.35 m	3	4	4	5	3	
3.60	m	101111111111111111111111111111111111111	2	5	4	4	Terminated @ 3.5 m	
3.75			2	5	5	5		
3.90			3	5	6	3		
4.05			3	5	5	6		
4.20			2	5	6	4		
4.35 4.50			4	4	5	3		
4.65			Terminated @ 4.4 m					
	<u> </u>			·		·		
							l	

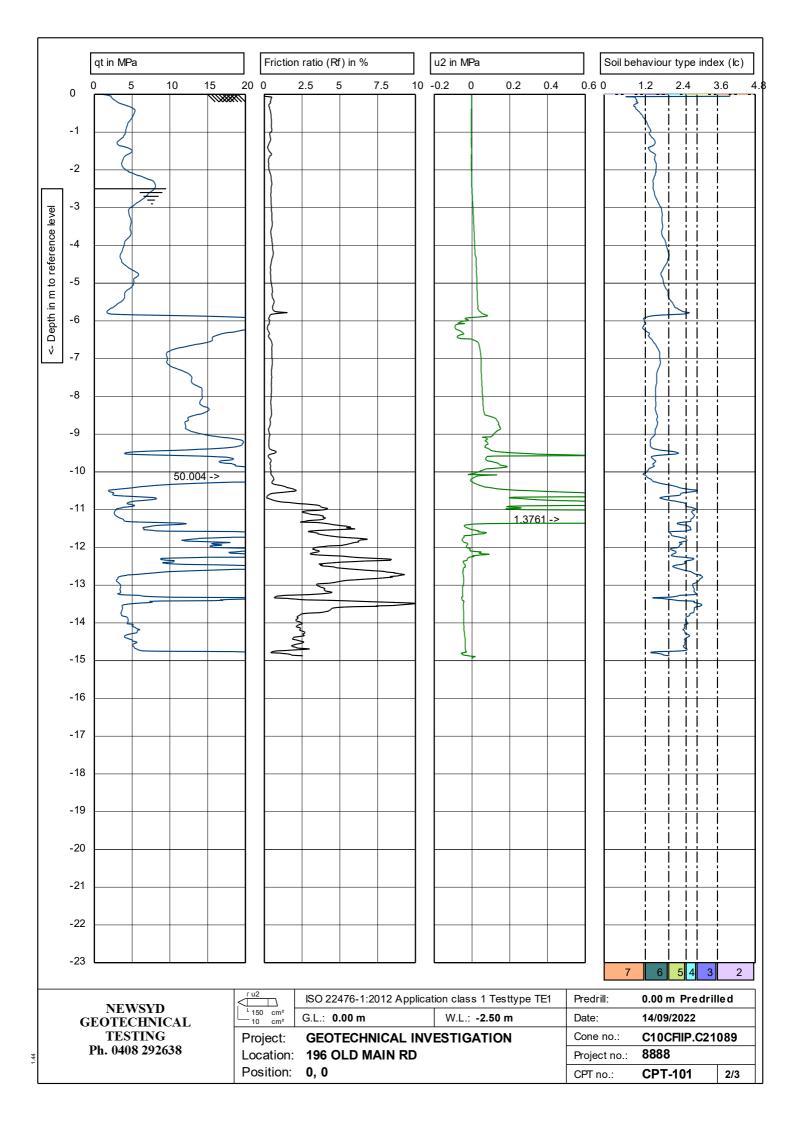
Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.a

Site	196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW	DCP Group Reference	P2208888JS03V01
Client	AB Rise Pty Ltd C/- DMPS	Log Date	07.02.2023 - 08.02.2023
Logged by	Logged by AK/TR		3 of 5
Checked by	WB	Page	3 01 3
Comments	DCP commenced from 50 mm bgl.		

	TEST DATA							
Depth Interval (m)	DCP115 (BH120)	DCP116 (BH121)	DCP117 (BH122)	DCP118 (BH123)	DCP119 (BH124)	DCP120 (BH125)	DCP121 (BH126)	
0.15	3	3	1	1	1	Hammer weight	1	
0.30	4	5	2	2	3	1	2	
0.45	Hammer weight	Hammer weight	1	2	2	Hammer weight	2	
0.60	Hammer weight	Hammer weight	1	2	4	1	1	
0.75	Hammer weight	Hammer weight	1	2	3	Hammer weight	Hammer weight	
0.90	Hammer weight	Hammer weight	1	3	2	1	1	
1.05	Hammer weight	Hammer weight	2	2	2	1	1	
1.20	Hammer weight	Hammer weight	2	2	4	1	1	
1.35	Hammer weight	Hammer weight	2	2	5	1	4	
1.50	Hammer weight	Hammer weight	2	3	7	2	5	
1.65	Hammer weight	Hammer weight	2	3	5	2	6	
1.80	2	Hammer weight	2	4	3		6	
1.95	2	Hammer weight	2	3	4	Hammer weight	6	
2.10		Hammer weight	2	4	5	Hammer weight	6	
2.25	Hammer weight	Hammer weight	3	3	<u>4</u> 5	2	6	
2.40	Hammer weight	Hammer weight	3	3	7	1	5	
2.55 2.70	2 2	Hammer weight Hammer weight	2 3	2 3	5	2	3	
2.85	3	Hammer weight	4	4	5	2	3	
3.00	4	Hammer weight	4	5	6	3	4	
3.15	3	Hammer weight	3	6	9	3	4	
3.30	3	Hammer weight	4	7	12	3	2	
3.45	6	Hammer weight	5	12	11	4	5	
3.60	5	Hammer weight	6	13	6	4	6	
3.75	4	Hammer weight	7	8	8	4	7	
3.90	4	Hammer weight	7	25	10	11	8	
4.05	5	Hammer weight	8	40+	12	9	7	
4.20	3	Hammer weight	8	Terminated @ 4.1 m	12	9	4	
4.35	4	Hammer weight	7	due to high 'N'	18	8	4	
4.50	T 1 1011		T : 1 10 44	counts		T 1 10 14	T : 1 1044	
4.65	Terminated @ 4.4 m	Terminated @ 4.4 m	Terminated @ 4.4 m		Terminated @ 4.4 m	Terminated @ 4.4 m	Terminated @ 4.4 m	
					I .	I .	I	

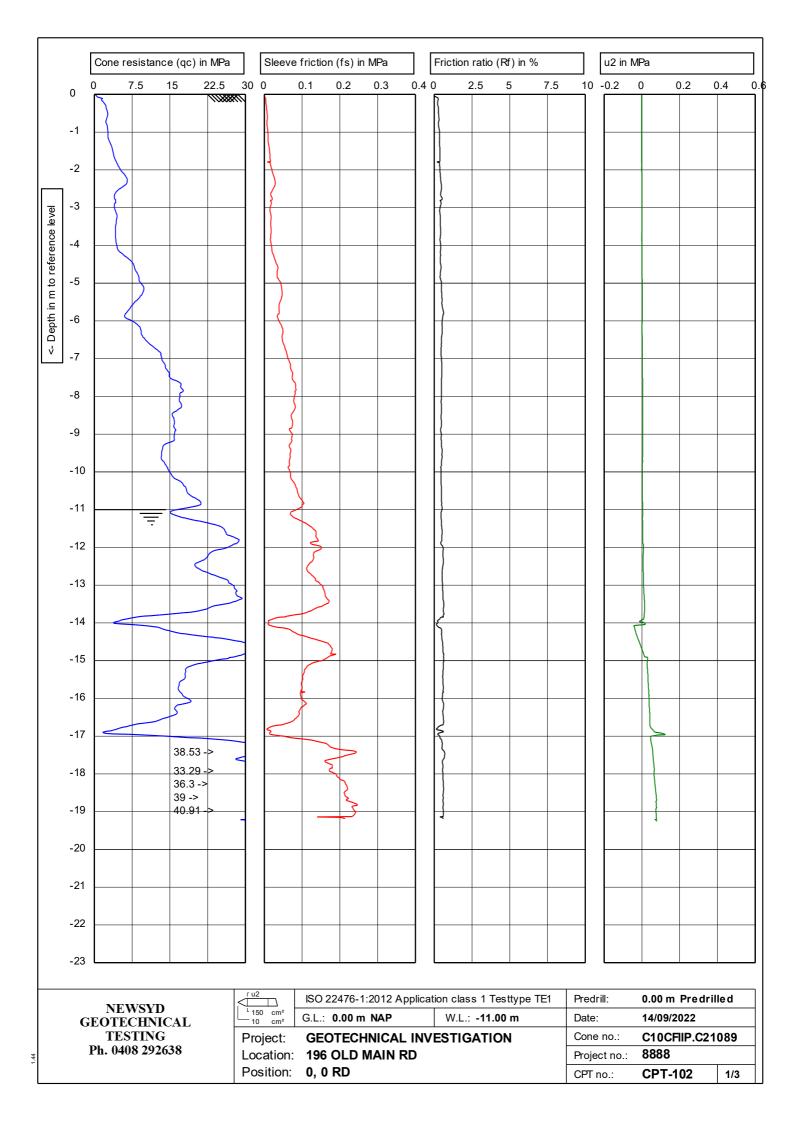
Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

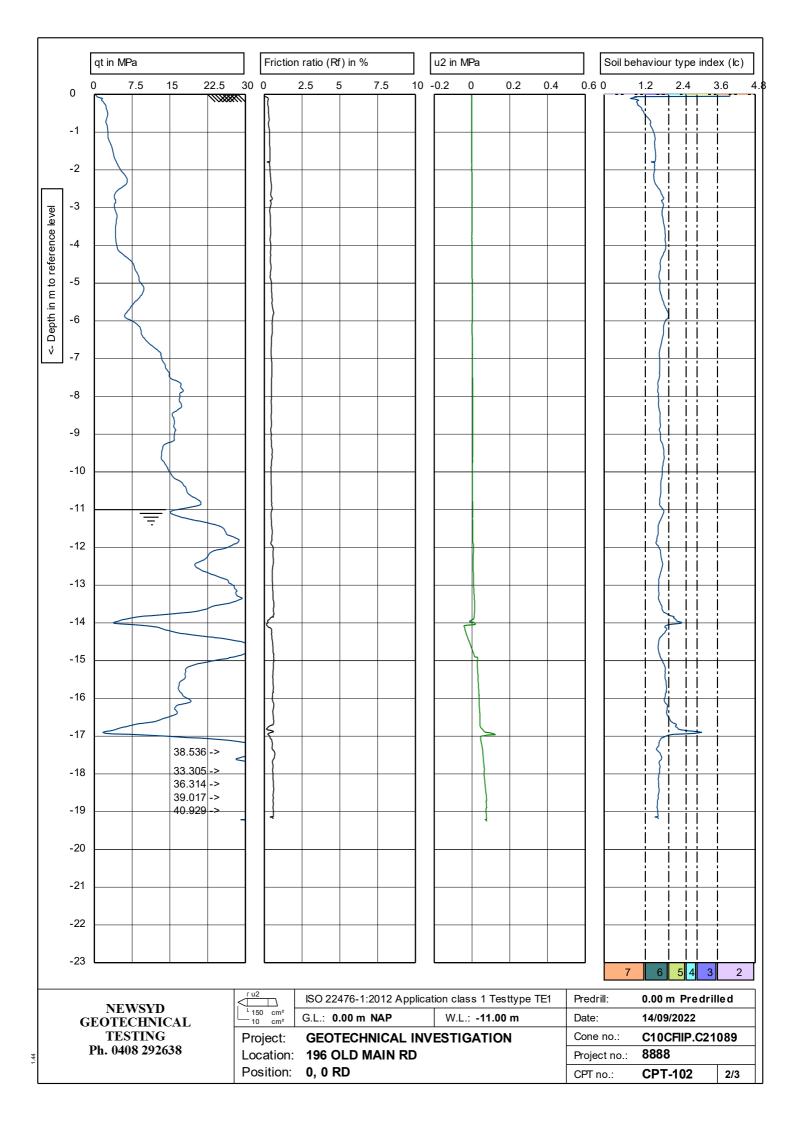

Site	196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW	DCP Group Reference	P2208888JS03V01	
Client	AB Rise Pty Ltd C/- DMPS	Log Date	07.02.2023 - 08.02.2023	
Logged by	AK/TR	Page	4 of 5	
Checked by	WB Page		4 01 3	
Comments	DCP commenced from 50 mm bgl.			


TEST DATA

	TEST DATA							
Depth Interval (m)	DCP122 (BH127)	DCP123 (BH128)	DCP124 (BH129)					
0.15	2	3	2					
0.30	1	2	6					
0.45	Hammer weight	2	3					
0.60	Hammer weight	Hammer weight	1					
0.75	Hammer weight	1	1					
0.90	Hammer weight	Hammer weight	1					
1.05	1	1	1					
1.20	1	Hammer weight	Hammer weight					
1.35	2	4	4					
1.50	5	4	5					
1.65	5	4	7					
1.80	6	4	6					
1.95	6	3	6					
2.10	7	3	7					
2.25	8	4	6					
2.40	4	6	8					
2.55	5	4	5					
2.70	2	5	4					
2.85	3	2	1					
3.00	4	4	3					
3.15	3	2	2					
3.30	4	2	2					
3.45	4	3	2					
3.60	4	<u>4</u> 3	2					
3.75 3.90	3 4	4	2 2					
4.05	4	5	2					
4.20	5	4	2					
4.35	4	4	2					
4.50								
4.65	Terminated @ 4.4 m	Terminated @ 4.4 m	Terminated @ 4.4 m					
.,,,,								
						l .	ı	

Appendix D - CPT Results

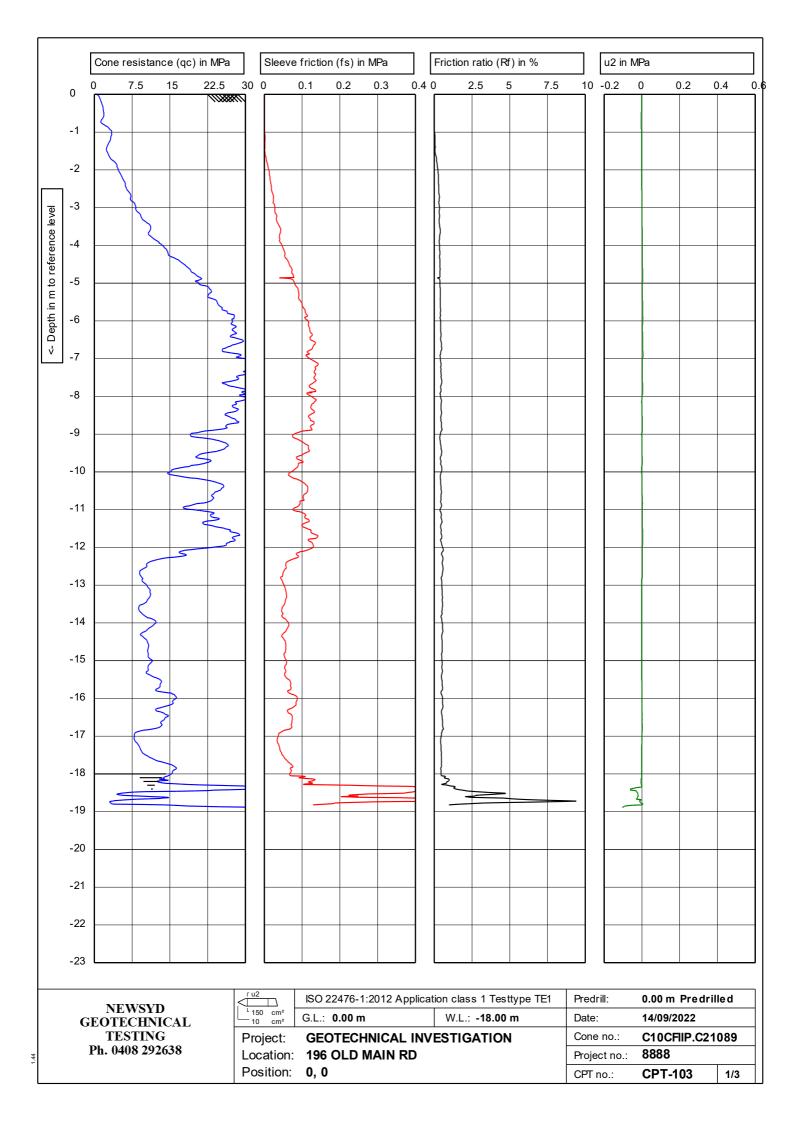


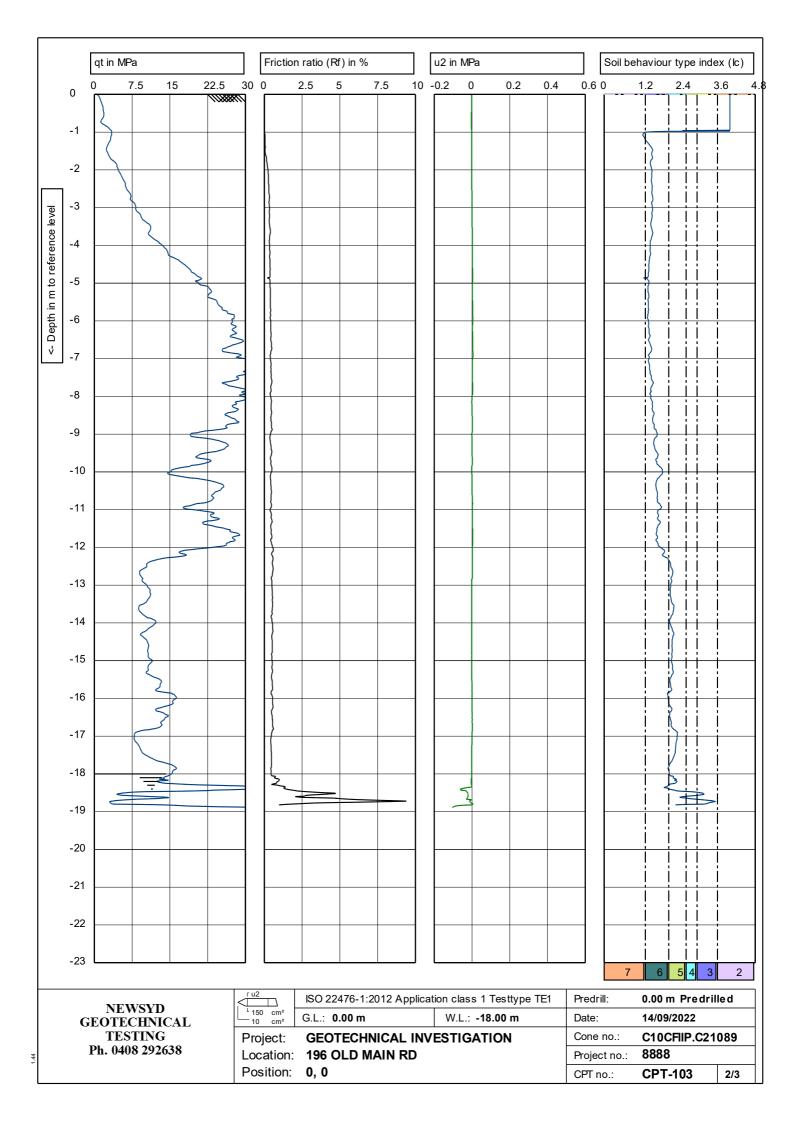

- (3) Clay
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph 0408 292638

r u2	ISO 22476-1:2012 Applicat	Predrill:	0.00 m Predril	le d	
150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: -2.50 m	Date:	14/09/2022	
Project:	GEOTECHNICAL INV	Cone no.:	C10CFIIP.C21	089	
Location:	196 OLD MAIN RD		Project no.:	8888	
l 					

NEWSYD GEOTECHNICAL	150 cm ²	G.L.: 0.00 m	W.L.: -2.50 m	Date:	14/09/2022	
TESTING	Project:	GEOTECHNICAL INV	ESTIGATION	Cone no.:	C10CFIIP.C21	089
Ph. 0408 292638	Location:	196 OLD MAIN RD		Project no.:	8888	
	Position:	0, 0		CPT no.:	CPT-101	3/3

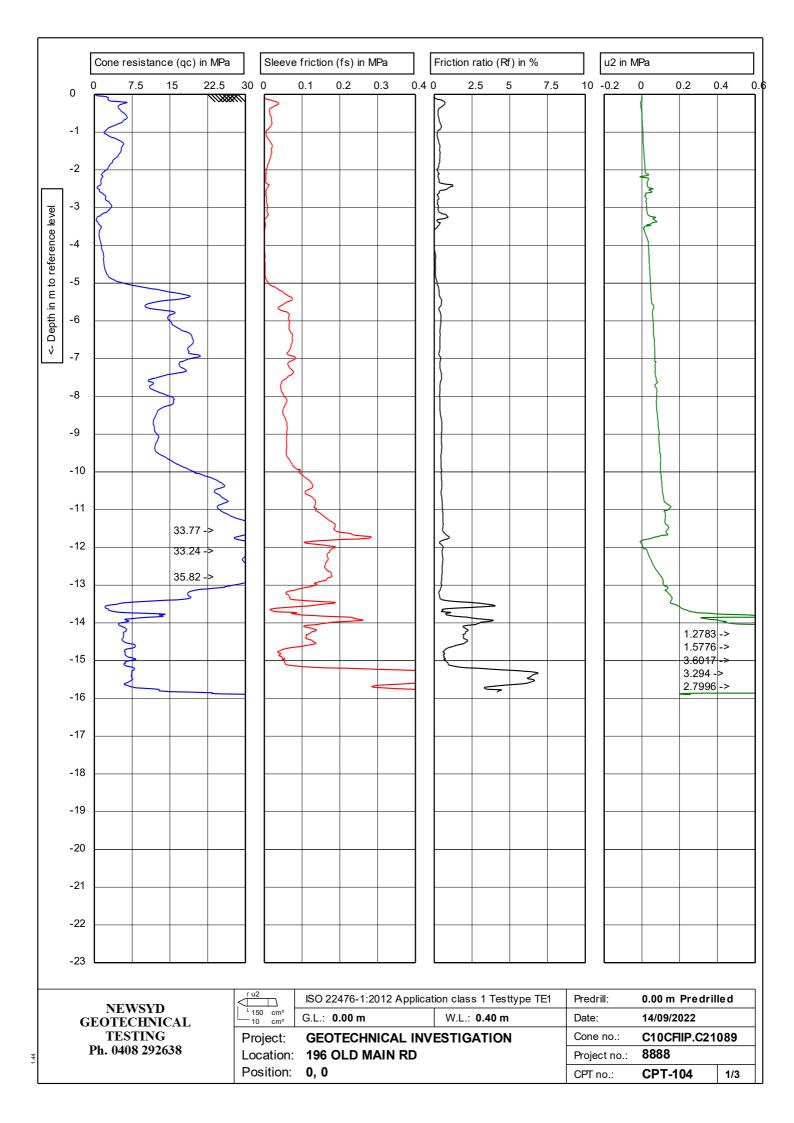


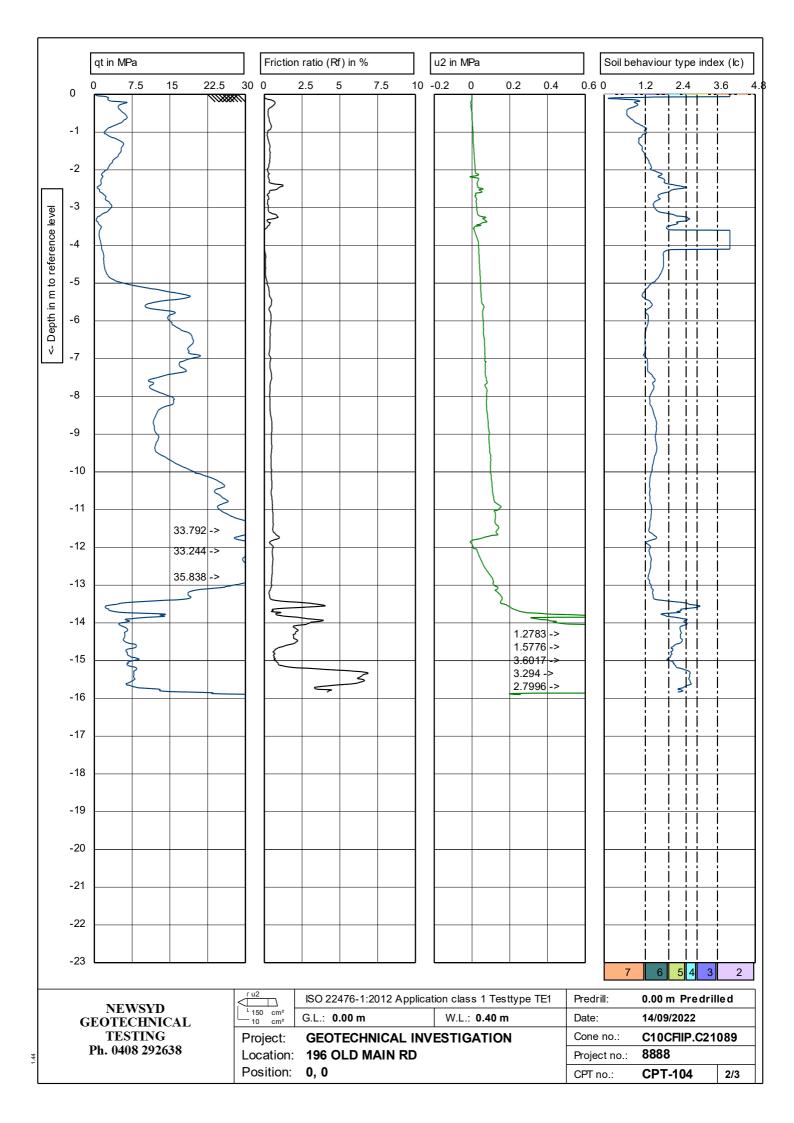

- (2) Organic soils
- (3) Clay
- (4) Silt mixture
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph. 0408 292638

r u2	ISO 22476-1:2012 Applicat	Predrill:	0.00 m Predril	le d	
150 cm ² 10 cm ²	G.L.: 0.00 m NAP	W.L.: -11.00 m	Date:	14/09/2022	
Project:	GEOTECHNICAL INV	ESTIGATION	Cone no.:	C10CFIIP.C21	089
Location:	196 OLD MAIN RD		Project no.:	8888	
Position:	0, 0 RD		CPT no.:	CPT-102	3/3

1 44

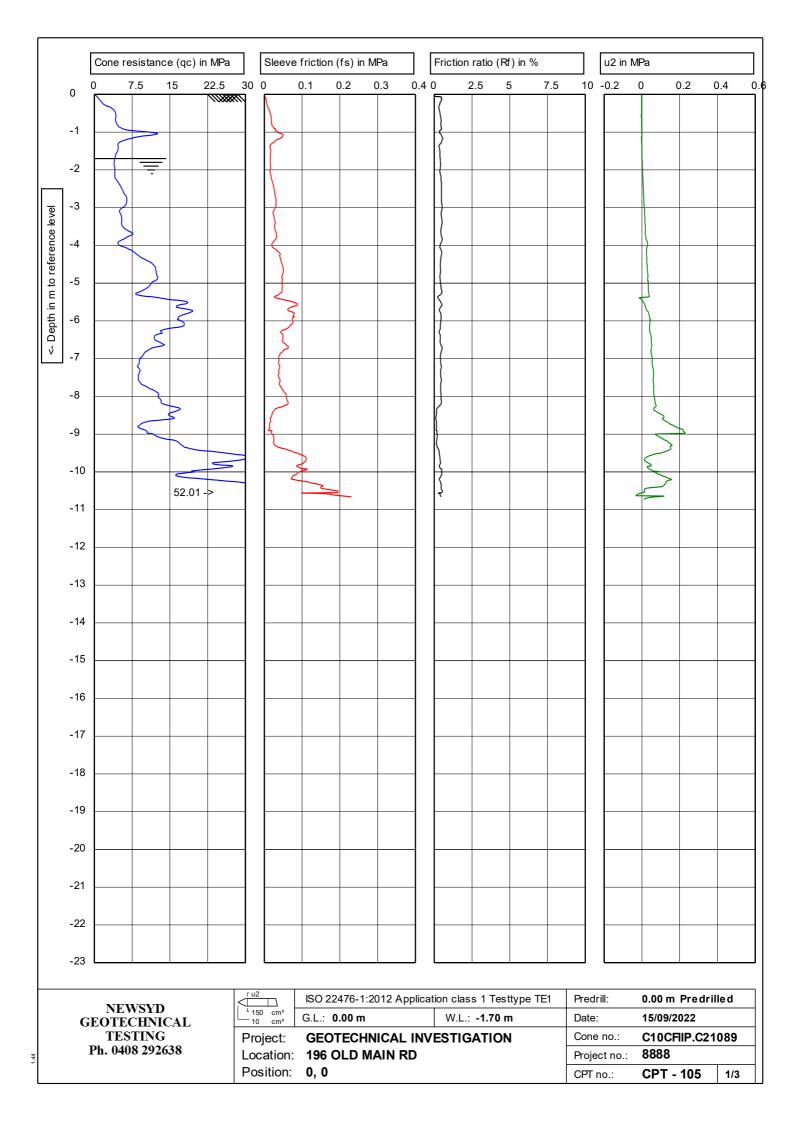


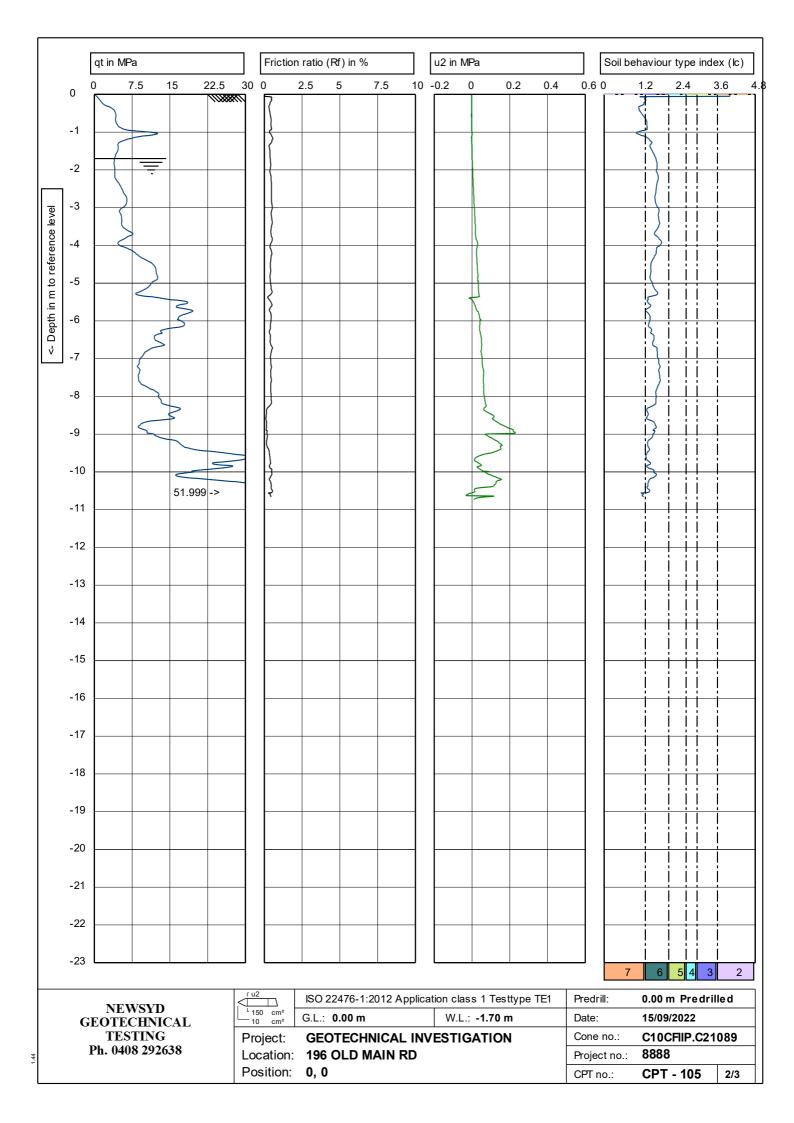

- (3) Clay
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph 0408 292638

L 150 cm ² 10 cm ²	ISO 22476-1:2012 Application class 1 Testtype TE1		Predrill:	0.00 m Predrilled		
	G.L.: 0.00 m	W.L.: -18.00 m	Date:	14/09/2022		
Project:	GEOTECHNICAL INV	Cone no.:	C10CFIIP.C21	089		
Location: 196 OLD MAIN RD		Project no.:	8888			
Dooition	0 0		ODT 400			

NEWSYD						
GEOTECHNICAL	150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: -18.00 m	Date:	14/09/2022	
TESTING	Project:	GEOTECHNICAL INVESTIGATION		Cone no.:	C10CFIIP.C21	089
Ph. 0408 292638	Location:	196 OLD MAIN RD		Project no.:	8888	
	Position:	0, 0		CPT no.:	CPT-103	3/3




- (3) Clay
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

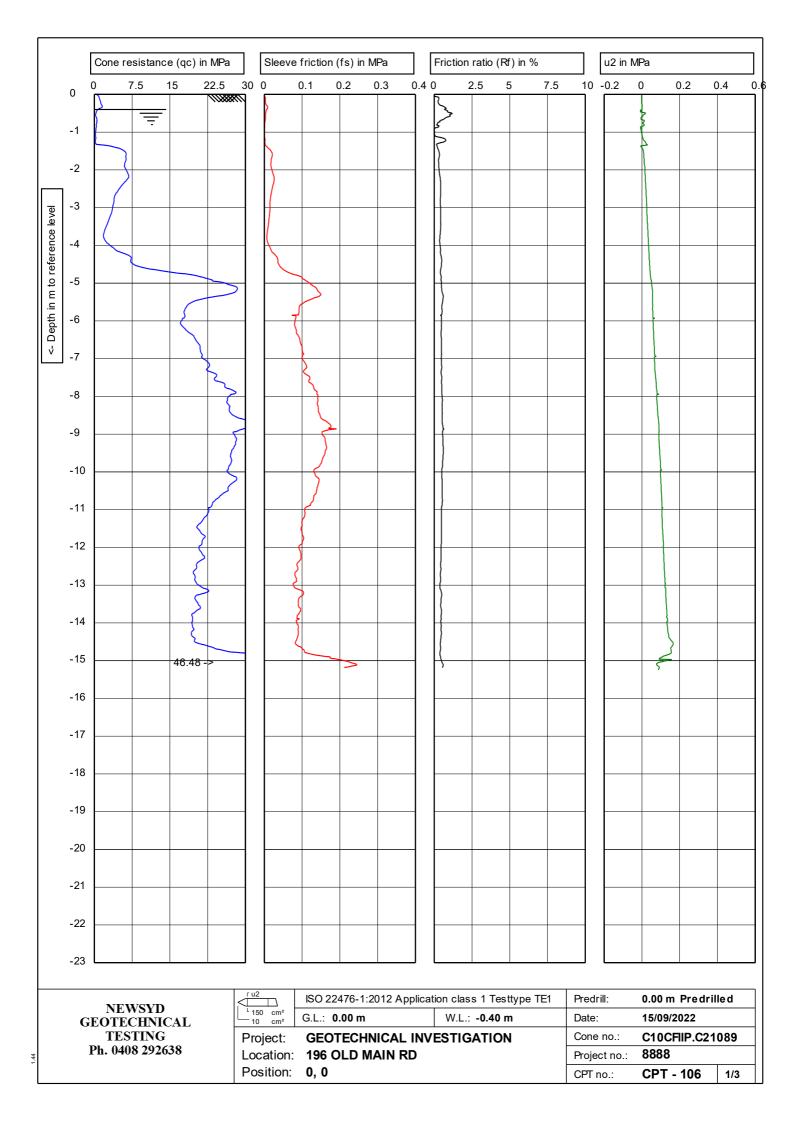
NEWSYD
GEOTECHNICAL
TESTING
Ph 0408 292638

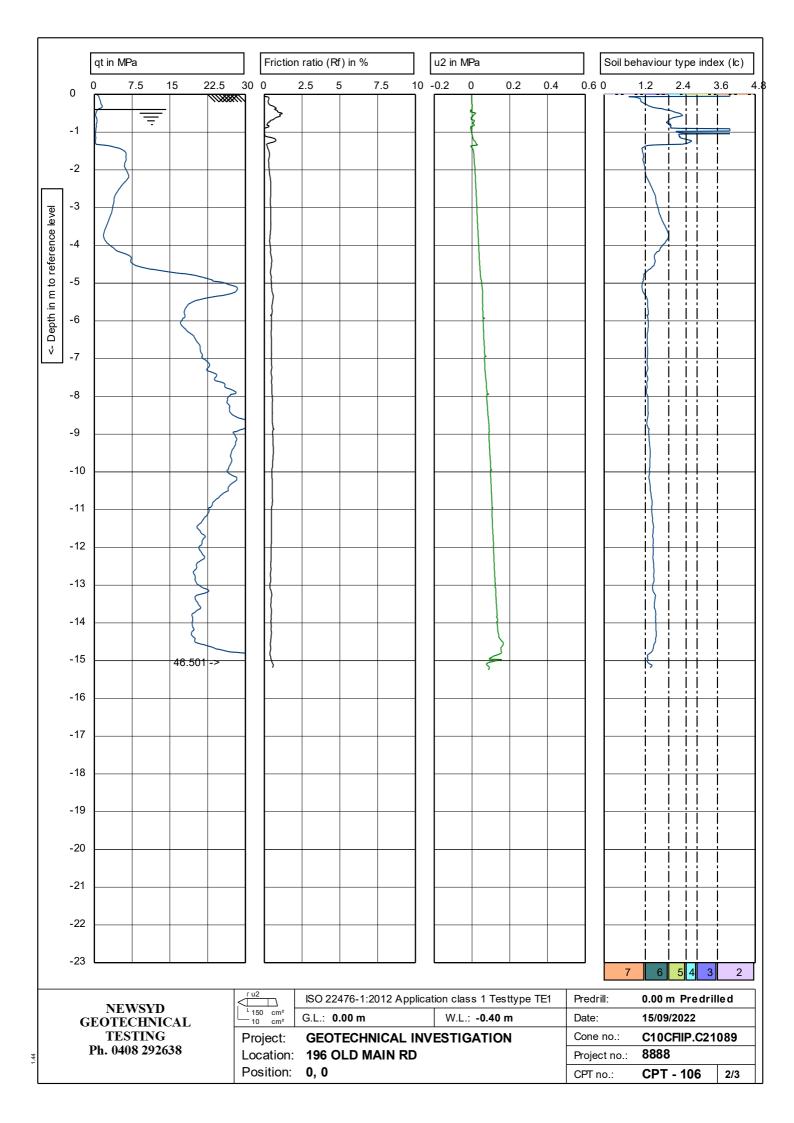
		ISO 22476-1:2012 Application class 1 Testtype TE1		Predrill:	0.00 m Predrilled	
	150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: 0.40 m	Date:	14/09/2022	
	Project:	Project: GEOTECHNICAL INVESTIGATION			C10CFIIP.C21089	
	Location: 196 OLD MAIN RD		Project no.:	8888		
	D14: 0 0					

NEWSYD GEOTECHNICAL	150 cm ²	G.L.: 0.00 m	W.L.: 0.40 m	Date:	14/09/2022	
TESTING	Project:	GEOTECHNICAL INV	ESTIGATION	Cone no.:	C10CFIIP.C21	089
Ph. 0408 292638	Location:	196 OLD MAIN RD		Project no.:	8888	
	Position:	0, 0		CPT no.:	CPT-104	3/3

- (2) Organic soils
- (3) Clay
- (4) Silt mixture
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph 0408 292638

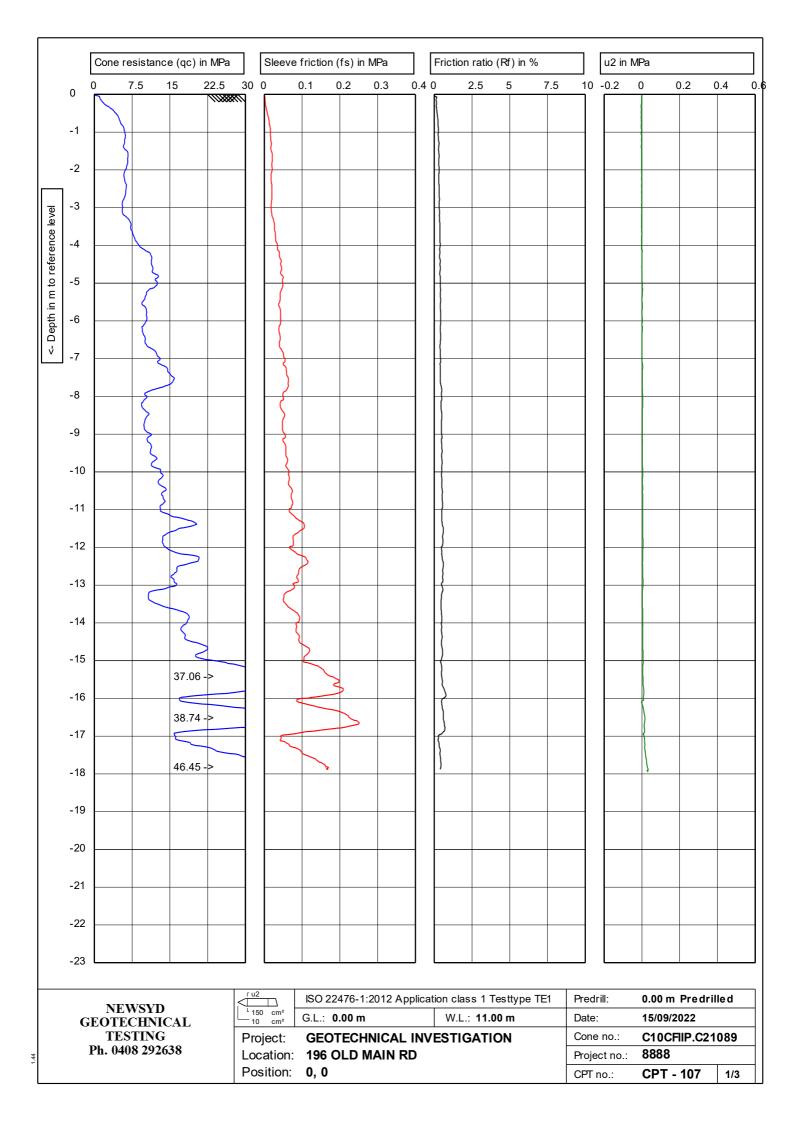

Position: 0, 0

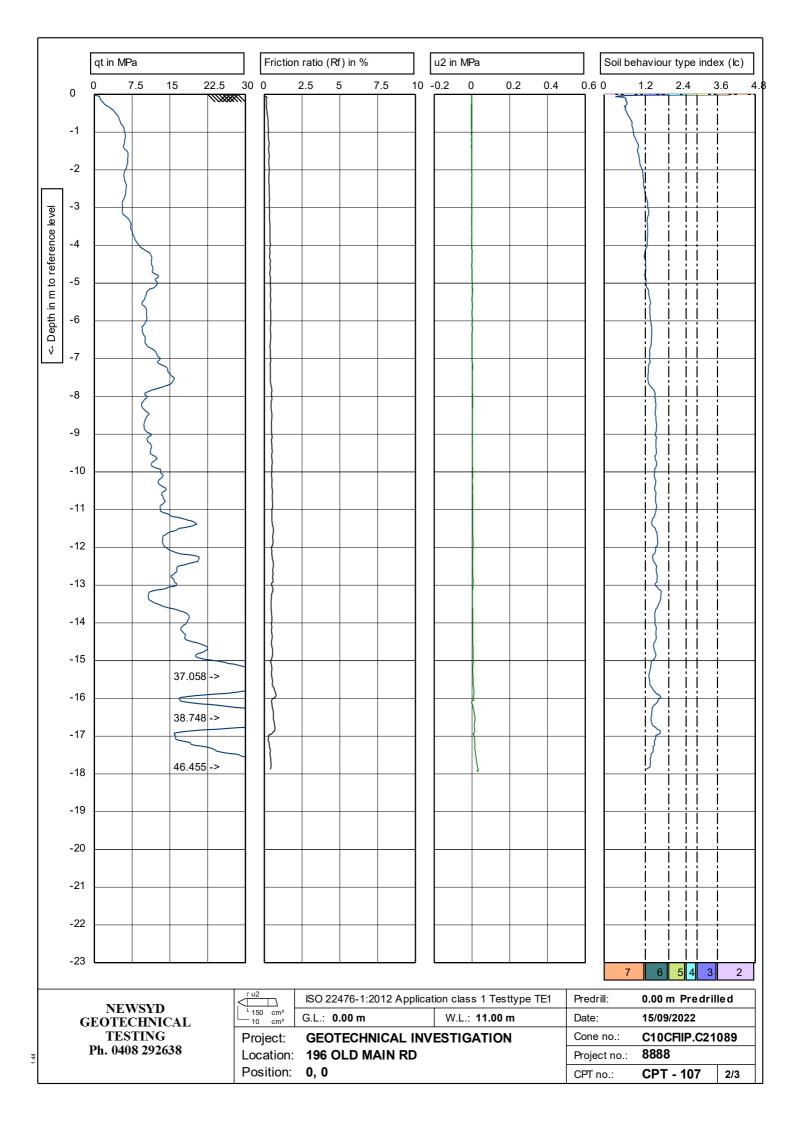

	_ Lu2	ISO 22476-1:2012 Application class 1 Testtype TE1		Predrill:	0.00 m Predrilled	
	150 cm ²	G.L.: 0.00 m	W.L.: -1.70 m	Date:	15/09/2022	
	Project:	Project: GEOTECHNICAL INVESTIGATION		Cone no.:	C10CFIIP.C21089	
	Location: 196 OLD MAIN RD		Project no.:	8888		

CPT no.:

CPT - 105

TESTING Ph. 0408 2926

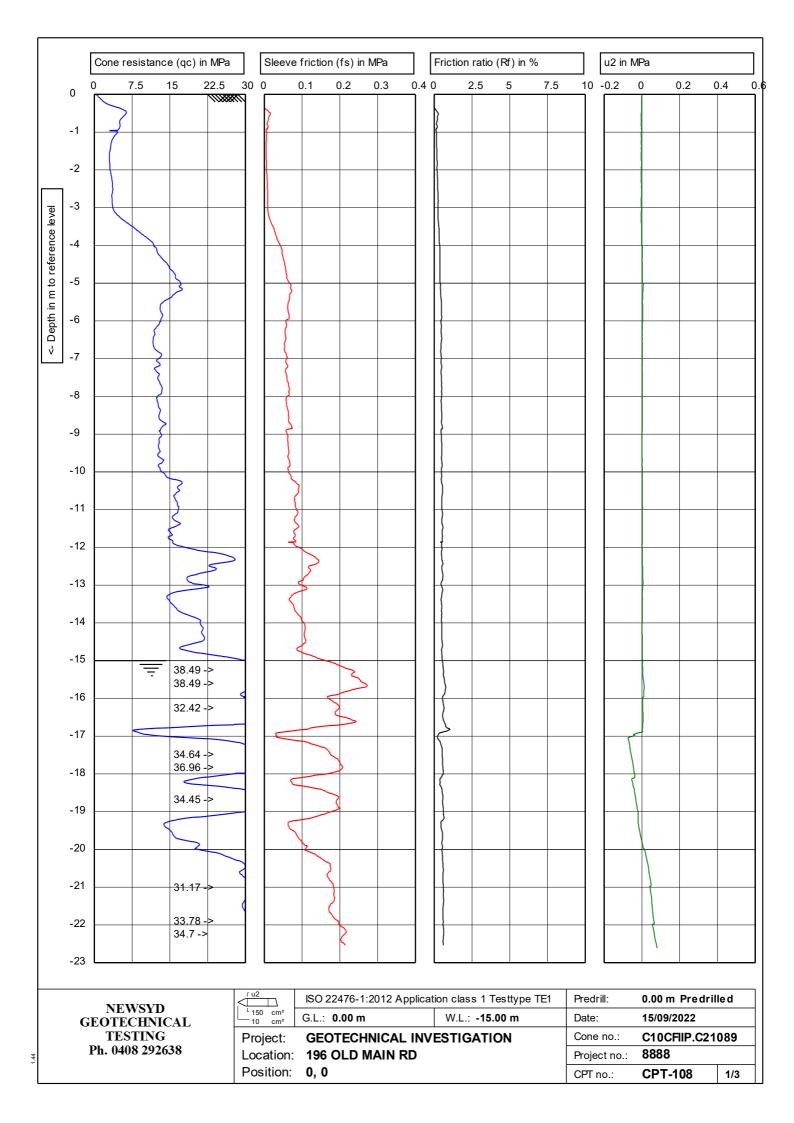


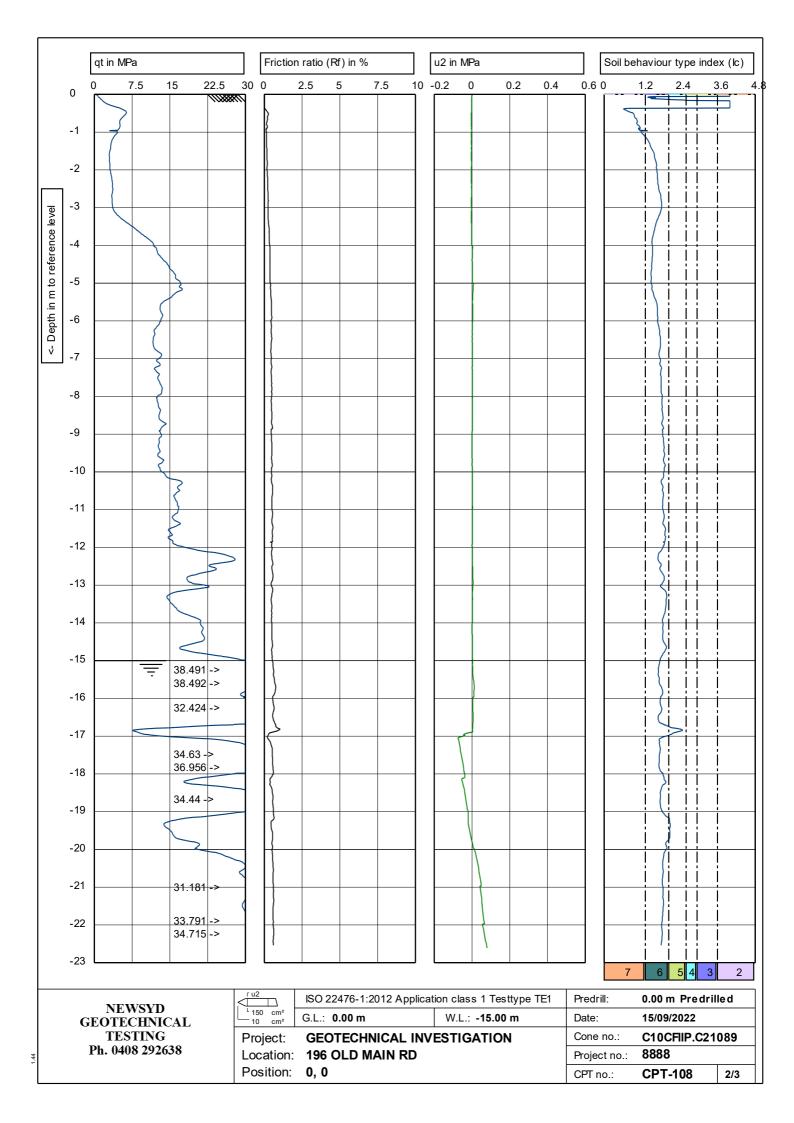

- (2) Organic soils
- (3) Clay
- (4) Silt mixture
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph. 0408 292638

	r u2	ISO 22476-1:2012 Application class 1 Testtype TE1		Predrill:	0.00 m Predrilled		
	150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: -0.40 m	Date:	15/09/2022		
	Project: GEOTECHNICAL INVESTIGATION Location: 196 OLD MAIN RD		Cone no.:	C10CFIIP.C21089			
			Project no.:	: 8888			
	Position:	0, 0		CPT no.:	CPT - 106	3/3	

1 44

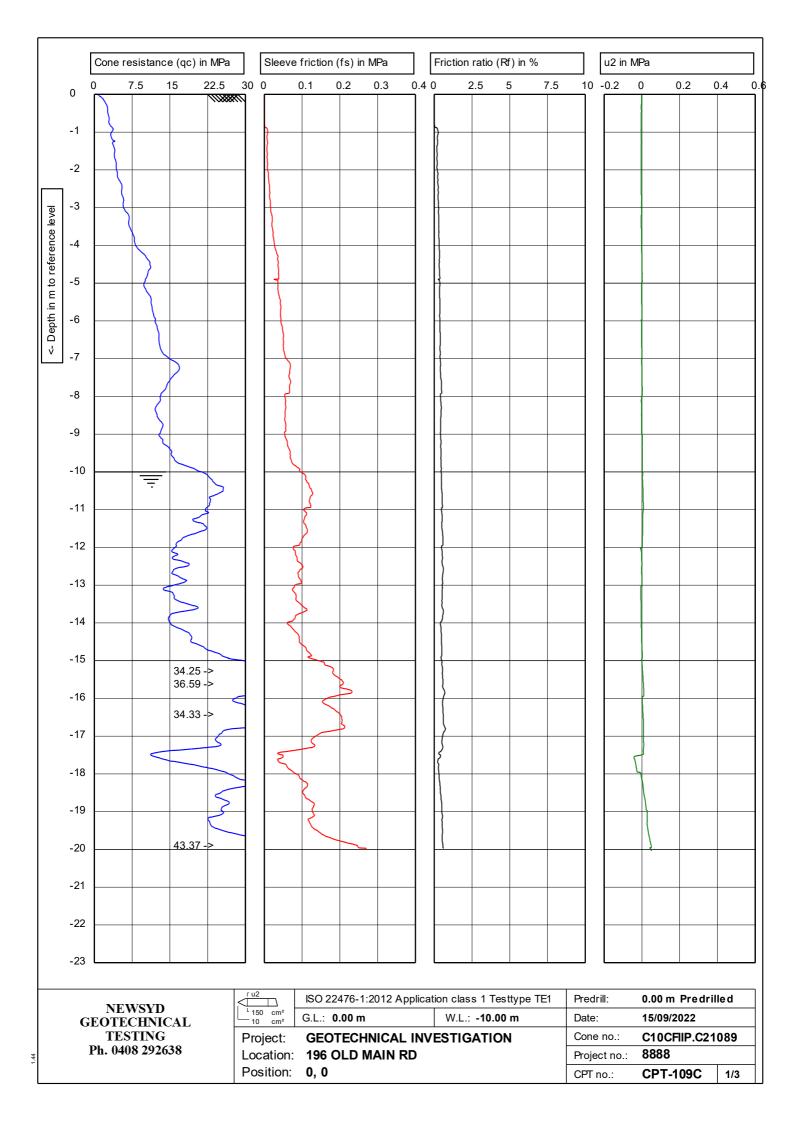


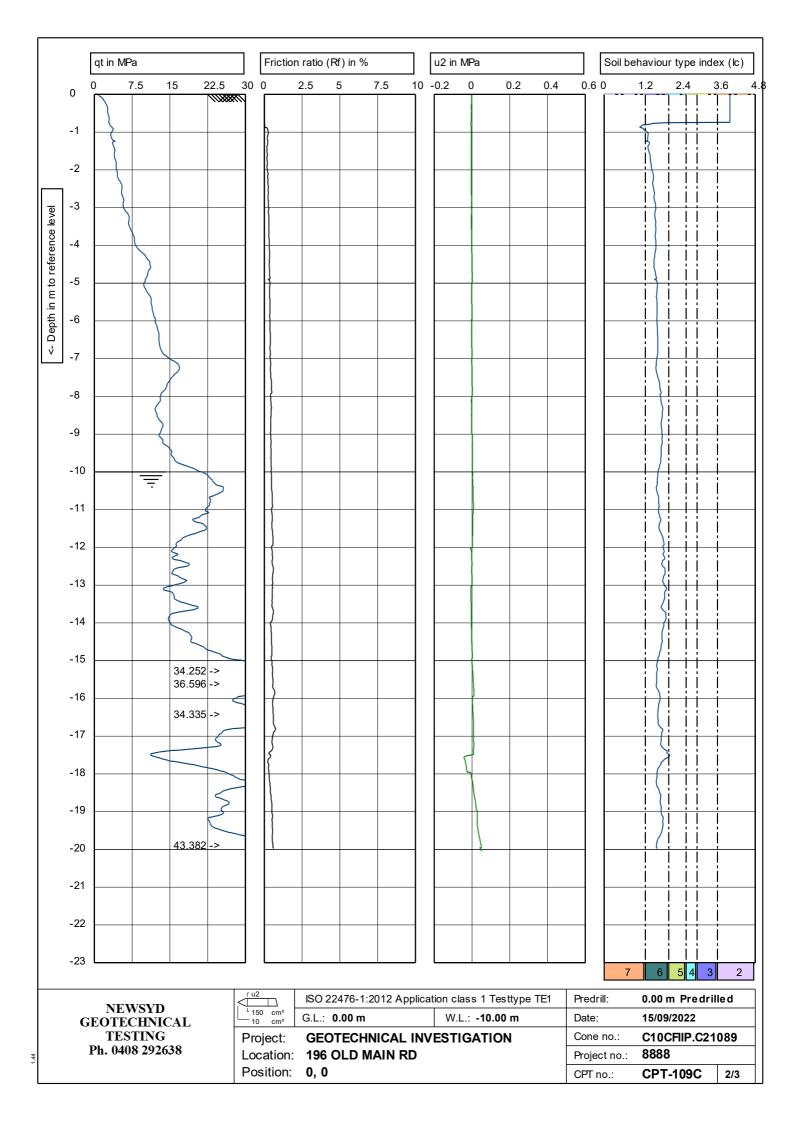

- (2) Organic soils
- (3) Clay
- (4) Silt mixture
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph. 0408 292638

		ISO 22476-1:2012 Applicat	ion class 1 Testtype TE1	Predrill:	0.00 m Predrilled				
	150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: 11.00 m	Date:	15/09/2022				
	Project:	GEOTECHNICAL INV	ESTIGATION	Cone no.:	C10CFIIP.C21089				
	Location:	196 OLD MAIN RD		Project no.:	8888				
,		0.0		CDT no :	CDT 107	2/2			

777




- (2) Organic soils
- (3) Clay
- (4) Silt mixture
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

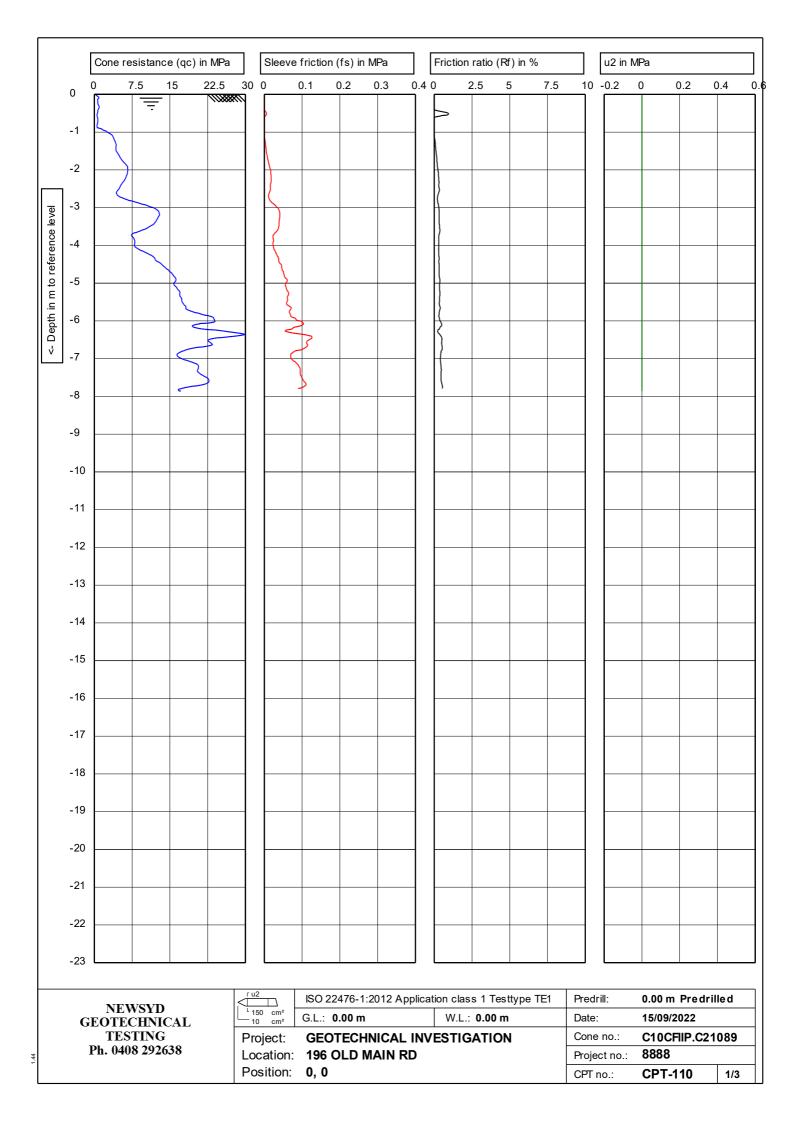
NEWSYD
GEOTECHNICAL
TESTING
Ph 0408 292638

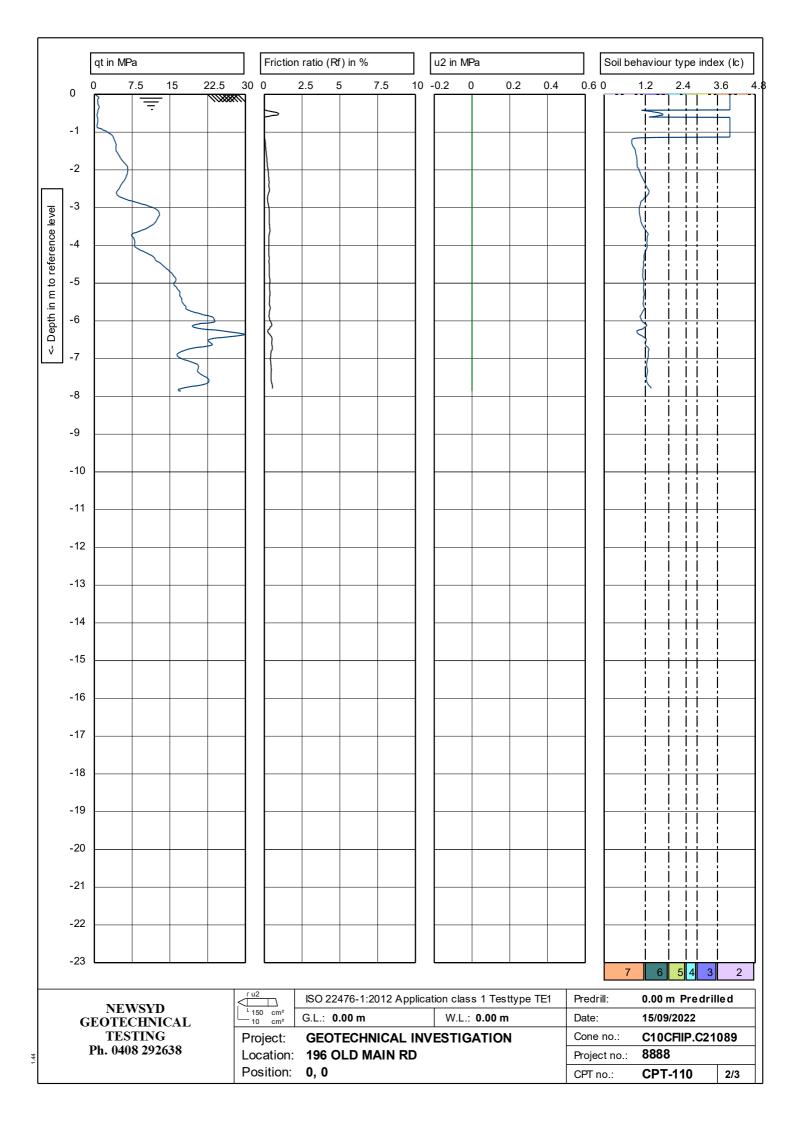
	ISO 22476-1:2012 Applicat	ion class 1 Testtype TE1	Predrill: 0.00 m Predrilled				
150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: -15.00 m	Date:	15/09/2022			
Project:	GEOTECHNICAL INV	ESTIGATION	Cone no.:	C10CFIIP.C21089			
Location:	196 OLD MAIN RD		Project no.:	8888			
Position:	0, 0		CPT no.:	CPT-108	3/3		

:

- (2) Organic soils
- (3) Clay
- (4) Silt mixture
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph 0408 292638


Position: 0, 0


	L m3	ISO 22476-1:2012 Applicat	ion class 1 Testtype TE1	Predrill:	0.00 m Predrilled
	150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: -10.00 m	Date:	15/09/2022
P	Project:	GEOTECHNICAL INV	ESTIGATION	Cone no.:	C10CFIIP.C21089
	Location:	196 OLD MAIN RD		Project no.:	8888

CPT no.:

CPT-109C

.

- (2) Organic soils
- (3) Clay
- (4) Silt mixture
- (5) Sand mixture
- (6) Sand clean to silty
- (7) Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph 0408 292638

 	ISO 22476-1:2012 Applicat	ion class 1 Testtype TE1	Predrill:	0.00 m Predrilled			
150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: 0.00 m	Date:	15/09/2022 C10CFIIP.C210			
Project:	GEOTECHNICAL INV	ESTIGATION	Cone no.:	C10CFIIP.C21	089		
Location:	196 OLD MAIN RD		Project no.:	8888			
Position:	0, 0		CPT no.:	CPT-110	3/3		

TESTING Ph. 0408 2926

Appendix E – Chromium Suite Analytical Results

Method based on Acid Sulfate Soil Manual (ASSMAC, 1998) Method ST-50 V05 Revised 30.04.2018

1 of 5

DS

10/09/2024

P2208888

Page:

Assessment Date:

Job Number:

Sampled By:

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au, www.martens.com.au

PROJECT DETAILS

Client: AB Rise Pty Ltd C/- DMPS

Project: Geotechnical and Acid Sulfate Soils Assessment

Sampling Site: 196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW

Sample Date: 14/09/202

SAMPLE DETAILS / TEST RESULTS

		pH Measurements	Sulfur Trail		Acid	Trail	ASS - Acid Base Accounting				
Sample Location	Sample Depth (mbgl)	pH _{kcl}	Chromium Reducible Sulfur	Chromium Reducible Sulfur (acidity units)	Titratable Actual Acidity	Titratable Actual Acidity (sulfur units)	Net Acidity (acidity units)	Net Acidity (sulfur units)	Net Acidity excluding ANC (acidity units)		Liming Rate ecluding ANC
		pH Units	%S	mole H+/t	mole H+/t	%S	mole H+/t	%S	mole H+/t	%S	kg/t
ASSMAC Criteria >1000 t	disturbance	<3.5	0.03	18	18	0.03	18	0.03	18	0.03	
BH101	0.50	4.8	<0.005	<3	<5	<0.01	5.3	0.009	5.3	0.009	<0.75
RHIOI	2.50	5.2	<0.005	<3	6	0.01	7.1	0.011	7.1	0.011	<0.75
	0.50	4.6	<0.005	<3	22	0.04	25	0.04	25	0.04	1.90
BH103	1.00	3.7	<0.005	<3	61	0.1	63	0.1	63	0.1	4.70
вптоз	2.50	4.8	0.05	30	16	0.02	46	0.073	46	0.073	3.40
	4.00	5.2	<0.005	<3	11	0.02	14	0.022	14	0.022	1.00
	0.50	5.3	<0.005	<3	<5	<0.01	5.8	0.009	5.8	0.009	<0.75
BH104	1.50	4.9	<0.005	<3	11	0.02	13	0.021	13	0.021	0.99
B11104	2.50	5.2	<0.005	<3	<5	<0.01	5.6	0.009	5.6	0.009	<0.75
	4.00	5.2	<0.005	<3	8	0.01	8.6	0.014	8.6	0.014	<0.75
BH106	0.20	5.1	0.005	3	7	0.01	10	0.017	10	0.017	0.78
БПТОО	1.20	4.7	0.005	<3	12	0.02	15	0.024	15	0.024	1.10
BH110	0.50	5.2	<0.005	<3	6	<0.01	7.1	0.011	7.1	0.011	<0.75
BITTO	1.50	4.5	<0.005	<3	31	0.05	33	0.052	33	0.052	2.40
	0.50	6.4	<0.005	<3	<5	<0.01	<5	<0.005	<5	<0.005	<0.75
BH111	1.50	6.6	<0.005	<3	<5	<0.01	<5	<0.005	<5	<0.005	<0.75
ווווו	2.80	6.4	<0.005	<3	<5	<0.01	<5	<0.005	<5	<0.005	<0.75
	4.40	6.2	<0.005	<3	<5	<0.01	<5	0.007	<5	0.007	<0.75

Notes:

Highlighted values indicate exceedances of ASSMAC (1998) & WQA (2018) action critera.

Head Office

Method based on Acid Sulfate Soil Manual (ASSMAC, 1998) Method ST-50 V05 Revised 30.04,2018

2 of 5

DS

10/09/2024

P2208888

Page:

Assessment Date:

Job Number:

Sampled By:

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au, www.martens.com.au

PROJECT DETAILS

Client: AB Rise Pty Ltd C/- DMPS

Project: Geotechnical and Acid Sulfate Soils Assessment

Sampling Site: 196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW

Sample Date: 14/09/202

SAMPLE DETAILS / TEST RESULTS

		pH Measurements	Sulfu	r Trail	Acid	Trail		ASS - Acid Ba	se Accounting		
Sample Location	Sample Depth (mbgl)	pH _{kcl}	Chromium Reducible Sulfur	Chromium Reducible Sulfur (acidity units)	Titratable Actual Acidity	Titratable Actual Acidity (sulfur units)	Net Acidity (acidity units)	Net Acidity (sulfur units)	Net Acidity excluding ANC (acidity units)		Liming Rate ecluding ANC
		pH Units	%S	mole H+/t	mole H+/t	%S	mole H+/t	%S	mole H+/t	%S	kg/t
ASSMAC Criteria >1000 t di	isturbance	<3.5	0.03	18	18	0.03	18	0.03	18	0.03	
BH112	1.00	4.9	<0.005	<3	15	0.02	17	0.027	17	0.027	1.20
BHIIZ	2.00	5.0	0.04	26	23	0.04	48	0.078	48	0.078	3.60
BH113	0.30	5.8	0.005	<3	<5	<0.01	5.6	0.009	5.6	0.009	<0.75
BITTIS	1.00	5.3	<0.005	<3	11	0.02	12	0.019	12	0.019	0.87
BH115	0.10	3.8	0.03	18	240	0.38	270	0.43	270	0.43	20.00
611113	3.30	4.2	0.08	52	24	0.04	76	0.12	76	0.12	5.70
BH116	1.00	4.1	0.07	44	39	0.06	82	0.13	82	0.13	6.20
BITTIO	2.50	4.2	0.15	96	26	0.04	130	0.2	130	0.2	9.60
BH117	0.50	3.9	0.01	7	160	0.26	180	0.29	180	0.29	14.00
DITTI	1.50	3.7	0.14	88	74	0.12	160	0.26	160	0.26	12.00
BH118	0.50	3.9	0.09	56	170	0.28	240	0.38	240	0.38	18.00
BITTO	3.50	4	0.3	180	37	0.06	220	0.36	220	0.36	17.00
BH119	1.00	3.9	0.22	130	61	0.1	200	0.32	200	0.32	15.00
BITTY	2.00	8.4	0.17	100	<5	>0.01	<5	0.006	100	0.17	7.80
BH120	0.50	3.9	<0.005	<3	110	0.18	120	0.19	120	0.19	9.00
511120	1.50	3.7	0.99	620	120	0.2	740	1.2	740	1.2	56.00
BH121	0.20	3.7	16	0.02	220	0.36	260	0.41	260	0.41	19.00
DITIZI	1.50	4	0.24	150	61	0.1	210	0.34	210	0.34	16.00

Notes:

Highlighted values indicate exceedances of ASSMAC (1998) & WQA (2018) action critera.

Head Office

Method based on Acid Sulfate Soil Manual (ASSMAC, 1998) Method ST-50 V05 Revised 30.04.2018

3 of 5

DS

10/09/2024

P2208888

Page:

Assessment Date:

Job Number:

Sampled By:

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au, www.martens.com.au

PROJECT DETAILS

Client: AB Rise Pty Ltd C/- DMPS

Project: Geotechnical and Acid Sulfate Soils Assessment

Sampling Site: 196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW

Sample Date: 14/09/202

SAMPLE DETAILS / TEST RESULTS

		pH Measurements	Sulfu	r Trail	Acid	l Trail		ASS - Acid Ba	se Accounting		
Sample Location	Sample Depth (mbgl)	pH_kcl	Chromium Reducible Sulfur	Chromium Reducible Sulfur (acidity units)	Titratable Actual Acidity	Titratable Actual Acidity (sulfur units)	Net Acidity (acidity units)	Net Acidity (sulfur units)	Net Acidity excluding ANC (acidity units)		Liming Rate ecluding ANC
		pH Units	%S	mole H+/t	mole H+/t	%S	mole H+/t	%S	mole H+/t	%S	kg/t
ASSMAC Criteria >1000 t o	listurbance	<3.5	0.03	18	18	0.03	18	0.03	18	0.03	
BH122	1.00	4	0.59	370	86	0.14	490	0.78	490	0.78	37.00
DITIZZ	3.50	5.3	0.05	30	<5	<0.01	35	0.056	35	0.056	2.60
BH123	0.50	4.4	0.54	340	22	0.04	370	0.6	370	0.6	28.00
ВПІЗ	1.50	4.6	0.3	190	13	0.02	200	0.32	200	0.32	15.00
BH124	1.50	4.2	0.25	160	220	0.35	220	0.35	220	0.35	16.00
DT124	3.50	5.1	0.006	4	6	0.01	9.8	0.016	9.8	0.016	<0.75
BH125	0.20	4.1	0.01	8	58	0.09	72	0.12	72	0.12	5.40
BITTZS	1.50	5.1	0.01	7	22	0.03	29	0.046	29	0.046	2.20
BH126	1.50	4.2	0.03	16	54	0.09	73	0.12	73	0.12	5.50
DITIZO	3.00	4.6	0.06	39	13	0.02	52	0.083	52	0.083	3.90
BH127	1.00	4.3	0.04	28	30	0.05	59	0.094	59	0.094	4.40
DH12/	2.50	4.7	0.06	36	12	0.02	48	0.078	48	0.078	3.60
BH128	0.50	4.3	0.007	4	30	0.05	37	0.059	37	0.059	2.80
ыпто	1.50	4	0.15	91	47	0.08	140	0.22	140	0.22	10.00
BH129	0.50	4	0.1	60	130	0.21	200	0.32	200	0.32	15.00

Notes:

Highlighted values indicate exceedances of ASSMAC (1998) & WQA (2018) action critera.

Head Office

Method based on Acid Sulfate Soil Manual (ASSMAC, 1998) Method ST-50 V05 Revised 30.04.2018

4 of 5

RIM

10/09/2024

P2208888

Page:

Assessment Date:

Job Number:

Sampled By:

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au, www.martens.com.au

PROJECT DETAILS

Client: AB Rise Pty Ltd C/- DMPS

Project: Geotechnical and Acid Sulfate Soils Assessment

Sampling Site: 196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW

Sample Date: 16/04/202

SAMPLE DETAILS / TEST RESULTS

		pH Measurements	Sulfu	r Trail	Acid	l Trail		ASS - Acid Ba	se Accounting		
Sample Location	Sample Depth (mbgl)	pH_kcl	Chromium Reducible Sulfur	Chromium Reducible Sulfur (acidity units)	Titratable Actual Acidity	Titratable Actual Acidity (sulfur units)	Net Acidity (acidity units)	Net Acidity (sulfur units)	Net Acidity excluding ANC (acidity units)	Net Acidity excluding ANC (sulfur units)	Liming Rate ecluding ANC
		pH Units	%S	mole H+/t	mole H+/t	%S	mole H+/t	%S	mole H+/t	%S	kg/t
ASSMAC Criteria >1000 t d	isturbance	<3.5	0.03	18	18	0.03	18	0.03	18	0.03	
	0.4 - 0.5	3.7	0.04	24	49	0.08	180	0.35	180	0.29	14.00
BH133	4.1 - 1.5	3.8	0.21	130	61	0.1	220	0.37	220	0.36	17.00
B11133	2.5 - 2.6	4.4	0.13	82	14	0.02	96	0.15	96	0.15	7.20
	3.5 - 3.6	4.3	0.09	58	12	0.02	71	0.11	71	0.11	5.30
	0.4 - 0.5	4.1	0.04	24	33	0.05	110	0.21	110	0.18	8.50
	0.9 - 1.0	3.6	0.01	8	110	0.18	160	0.27	160	0.25	12.00
BH134	2.0 - 2.1	3.8	0.07	45	36	0.06	92	0.15	92	0.15	6.90
	2.4 - 2.5	7.6	0.37	230	<5	<0.01	<5	<0.005	230	0.37	17.00
	3.0 - 3.1	7.1	0.37	230	<5	<0.01	51	0.082	230	0.37	17.00
	0.4 - 0.5	3.5	0.02	12	99	0.16	170	0.3	170	0.27	13.00
	0.9 - 1.0	3.6	0.03	17	120	0.2	200	0.35	200	0.32	15.00
BH135	1.9 - 2.0	3.7	0.41	260	49	0.08	340	0.56	340	0.54	25.00
	2.4 - 2.5	4.0	0.28	180	21	0.03	200	0.32	200	0.32	15.00
	3.4 - 3.5	4.3	0.28	180	10	0.02	190	0.3	190	0.3	14.00
	0.9 - 1.0	3.7	0.03	16	86	0.14	120	0.21	120	0.2	9.30
BH136	1.5 - 1.6	4.1	0.13	79	26	0.04	110	0.17	110	0.17	7.90
DI1130	2.0 - 2.1	4.5	0.17	110	8	0.01	110	0.18	110	0.18	8.50
	3.0 - 3.1	4.2	<0.005	<3	10	0.02	10	0.016	10	0.016	0.75

Notes:

Highlighted values indicate exceedances of ASSMAC (1998) & WQA (2018) action critera.

Head Office

Method based on Acid Sulfate Soil Manual (ASSMAC, 1998) Method ST-50 V05 Revised 30.04.2018

5 of 5

RIM

10/09/2024

P2208888

Page:

Assessment Date:

Job Number:

Sampled By:

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au, www.martens.com.au

PROJECT DETAILS

Client: AB Rise Pty Ltd C/- DMPS

Project: Geotechnical and Acid Sulfate Soils Assessment

Sampling Site: 196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW

Sample Date: 16/04/202

SAMPLE DETAILS / TEST RESULTS

Sample Location Sampl Depth (m	pH Measureme			ır Trail		Acid Trail		ASS - Acid Base Accounting			
	Sample Depth (mbgl)	pH_kel	Chromium Reducible Sulfur	Chromium Reducible Sulfur (acidity units)	Titratable Actual Acidity	Titratable Actual Acidity (sulfur units)	Net Acidity (acidity units)	Net Acidity (sulfur units)	Net Acidity excluding ANC (acidity units)		Liming Rate ecluding ANC
		pH Units	%S	mole H+/t	mole H+/t	%S	mole H+/t	%S	mole H+/t	%S	kg/t
ASSMAC Criteria >1000 t di	isturbance	<3.5	0.03	18	18	0.03	18	0.03	18	0.03	
	0.4 - 0.5	3.8	0.07	46	61	0.1	120	0.2	120	0.2	9.20
BH137	1.5 - 1.6	3.8	0.44	280	61	0.1	340	0.55	340	0.55	26.00
BITT37	2.5 - 2.6	4.3	0.29	180	7	0.01	190	0.3	190	0.3	14.00
	3.5 - 3.6	4.1	0.37	230	13	0.02	250	0.39	250	0.39	18.00
	0.9 - 1.0	3.8	0.03	19	61	0.1	87	0.14	87	0.14	6.50
BH138	2.0 - 2.1	4.4	0.02	12	10	0.02	22	0.036	22	0.036	1.70
впізо	3.0 - 3.1	4.4	0.13	82	9	0.01	91	0.15	91	0.15	6.90
	3.9 - 4.0	5.0	<0.005	<3	<5	<0.01	<5	0.008	<5	0.008	<0.75

Notes:

Highlighted values indicate exceedances of ASSMAC (1998) & WQA (2018) action critera.

Head Office

Appendix F – Laboratory Test Certificates

ABN: 25 131 532 020

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145

Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Customer: Martens & Associates Pty Ltd Job number: 23-0067

Project: P2208888 Report number: 1

Location: Gan Gan Road, Anna Bay NSW Page: 1 of 1

Soil Index Properties

Sampling method: Sample(s) provided by customer, results apply to Test method(s): AS 1289.1.1, 2.1.1, 3.1.2, 3.2.1, 3.3.1

the sample(s) as received.

	Results								
Laboratory sample no.	30652	30653	30654	30655	30656				
Customer sample no.	8888/BH115/ S/1.0	8888/BH118/ S/1.5	8888/BH119/ S/0.5	8888/BH122/ S/0.5	8888/BH122/ S/1.5				
Date sampled	07/02/2023	07/02/2023	07/02/2023	08/02/2023	08/02/2023				
Material description	silty CLAY, trace of sand, grey/brown	silty CLAY, trace of sand, grey/brown	silty CLAY, with sand, grey/brown	silty CLAY, trace of sand, dark grey/dark brown	silty CLAY, trace of sand, grey/brown				
Liquid limit (%)	86	94	50	88	88				
Plastic limit (%)	33	40	22	38	33				
Plasticity index (%)	53	54	28	50	55				
Linear shrinkage (%)	-	-	-	-	-				
Cracking / Curling / Crumbling	-	-	-	-	-				
Sample history	Air dried	Air dried	Air dried	Air dried	Air dried				
Preparation	Dry sieved	Dry sieved	Dry sieved	Dry sieved	Dry sieved				

Approved Signatory:

Halluh L. Coleman

Date: 17/05/2023

ABN: 25 131 532 020

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au

Test Report

Customer: Martens & Associates Pty Ltd **Job number:** 23-0067

Project:P2208888Report number: 1Location:Gan Gan Road, Anna Bay NSWPage: 1 of 2

Particle Size Distribution

Sampling method: Sample(s) provided by customer, results Test method(s): AS 1289.1.1, 3.6.1

apply to the sample(s) as received.

	Results								
Laboratory sample no.	30607	30608	30609	30610	30611				
Customer sample no.	8888/BH101/1.0	8888/BH102/1.0	8888/BH114/1.0	8888/BH119/2.1	8888/BH124/1.6				
Date sampled	08/02/2023	08/02/2023	08/02/2023	07/02/2023	08/02/2023				
Material description	SAND, trace of silt, dark brown	SAND, trace of silt, pale brown	SAND, trace of silt, brown	SAND, trace of silt, grey/dark brown	SAND, trace of silt, grey/brown				
% Passing AS Sieve									
63.0mm									
53.0mm									
37.5mm									
26.5mm									
19.0mm									
13.2mm									
9.5mm									
6.7mm									
4.75mm									
2.36mm									
1.18mm	100			100	100				
600µm	98	100		96	96				
425µm	85	99	100	86	79				
300µm	44	79	91	41	31				
150µm	8	6	8	5	5				
75µm	7	2	2	4	3				

Approved Signatory:

Halluh L. Coleman

Date: 11/05/2023

ABN: 25 131 532 020

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145

Ph: (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au

Test Report

Customer: Martens & Associates Pty Ltd **Job number:** 23-0067

Project:P2208888Report number: 1Location:Gan Gan Road, Anna Bay NSWPage: 2 of 2

Particle Size Distribution

Sampling method: Sample(s) provided by customer, results Test method(s): AS 1289.1.1, 3.6.1

apply to the sample(s) as received.

	Results							
Laboratory sample no.	30612	30613 30614		30615	30616			
Customer sample no.	8888/BH126/1.4	8888/BH127/1.6	8888/BH128/0.5	8888/BH130/ 0.4-0.8	8888/BH131/ 0-0.5			
Date sampled	08/02/2023	08/02/2023	08/02/2023	04/04/2023	04/04/2023			
Material description	SAND, trace of silt, grey/brown	SAND, trace of silt, grey/brown	SAND, trace of silt, dark brown	silty SAND, trace of gravel, dark brown	SAND, trace of silt, brown			
% Passing AS Sieve								
63.0mm								
53.0mm								
37.5mm								
26.5mm				100				
19.0mm				98				
13.2mm				95				
9.5mm				95				
6.7mm				95				
4.75mm				93				
2.36mm			100	91				
1.18mm	100	100	99	89	100			
600µm	96	97	94	86	99			
425µm	80	82	76	81	91			
300µm	36	36	33	56	56			
150µm	5	5	11	22	8			
75µm	3	4	8	19	6			

Approved Signatory:

Halluh L. Coleman

Date: 11/05/2023

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 306476

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Dean Shi
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2208888
Number of Samples	28 Soil
Date samples received	23/09/2022
Date completed instructions received	23/09/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	30/09/2022						
Date of Issue	30/09/2022						
NATA Accreditation Number 2901. The	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Diego Bigolin, Inorganics Supervisor Nick Sarlamis, Assistant Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		306476-1	306476-2	306476-3	306476-4	306476-5
Your Reference	UNITS	BH101	BH101	BH103	BH103	BH103
Depth		0.5	2.5	0.5	1.0	2.5
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
pH _F (field pH test)	pH Units	5.3	5.4	5.3	4.6	5.0
pH _{FOX} (field peroxide test)	pH Units	2.3	3.4	2.2	2.1	2.0
Reaction Rate*	-	Low reaction				

sPOCAS field test						
Our Reference		306476-6	306476-7	306476-8	306476-9	306476-10
Your Reference	UNITS	BH103	BH104	BH104	BH104	BH104
Depth		4.0	0.5	1.5	2.5	4.0
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
pH _F (field pH test)	pH Units	5.1	5.3	5.6	5.7	5.8
pH _{FOX} (field peroxide test)	pH Units	2.7	2.5	3.7	3.8	3.9
Reaction Rate*	-	Low reaction				

sPOCAS field test						
Our Reference		306476-11	306476-12	306476-13	306476-14	306476-15
Your Reference	UNITS	BH106	BH106	BH108	BH108	BH109
Depth		0.2	1.2	1.0	2.0	1.0
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
pH _F (field pH test)	pH Units	5.5	5.5	5.3	5.5	5.0
pH _{FOX} (field peroxide test)	pH Units	2.9	3.2	3.5	3.7	3.3
Reaction Rate*	-	Low reaction				

sPOCAS field test						
Our Reference		306476-16	306476-17	306476-18	306476-19	306476-20
Your Reference	UNITS	BH109	BH109	BH109	BH110	BH110
Depth		1.9	2.5	5.2	0.5	1.5
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
pH _F (field pH test)	pH Units	5.2	5.4	5.3	5.7	5.5
pH _{FOX} (field peroxide test)	pH Units	3.7	3.8	3.6	2.4	2.6
Reaction Rate*	-	Low reaction				

sPOCAS field test						
Our Reference		306476-21	306476-22	306476-23	306476-24	306476-25
Your Reference	UNITS	BH111	BH111	BH111	BH111	BH112
Depth		0.5	1.5	2.8	4.4	1.0
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
pH _F (field pH test)	pH Units	5.9	6.4	6.6	6.6	5.5
pH _{FOX} (field peroxide test)	pH Units	3.7	3.4	4.7	4.8	3.5
Reaction Rate*	-	Low reaction				

sPOCAS field test				
Our Reference		306476-26	306476-27	306476-28
Your Reference	UNITS	BH112	BH113	BH113
Depth		2.0	0.3	1.0
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil
Date prepared	-	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022
pH _F (field pH test)	pH Units	4.9	6.1	6.1
pH _{FOX} (field peroxide test)	pH Units	2.0	3.1	3.5
Reaction Rate*	-	Medium reaction	Low reaction	Low reaction

Chromium Suite						
Our Reference		306476-1	306476-2	306476-3	306476-4	306476-5
Your Reference	UNITS	BH101	BH101	BH103	BH103	BH103
Depth		0.5	2.5	0.5	1.0	2.5
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
Date analysed	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
pH kcl	pH units	4.8	5.2	4.6	3.7	4.8
s-TAA pH 6.5	%w/w S	<0.01	0.01	0.04	0.1	0.02
TAA pH 6.5	moles H+/t	<5	6	22	61	16
Chromium Reducible Sulfur	%w/w	<0.005	<0.005	<0.005	<0.005	0.05
a-Chromium Reducible Sulfur	moles H+/t	<3	<3	<3	<3	30
S _{HCI}	%w/w S	[NT]	[NT]	[NT]	<0.005	[NT]
Skci	%w/w S	[NT]	[NT]	[NT]	<0.005	[NT]
Snas	%w/w S	[NT]	[NT]	[NT]	<0.005	[NT]
ANC _{BT}	% CaCO ₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.0090	0.011	0.040	0.10	0.073
a-Net Acidity	moles H+/t	5.3	7.1	25	63	46
Liming rate	kg CaCO₃/t	<0.75	<0.75	2	5	3
a-Net Acidity without ANCE	moles H+/t	5.3	7.1	25	63	46
Liming rate without ANCE	kg CaCO₃/t	<0.75	<0.75	1.9	4.7	3.4
s-Net Acidity without ANCE	%w/w S	0.0090	0.011	0.040	0.10	0.073

Chromium Suite						
Our Reference		306476-6	306476-7	306476-8	306476-9	306476-10
Your Reference	UNITS	BH103	BH104	BH104	BH104	BH104
Depth		4.0	0.5	1.5	2.5	4.0
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
Date analysed	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
pH _{kcl}	pH units	5.2	5.3	4.9	5.2	5.2
s-TAA pH 6.5	%w/w S	0.02	<0.01	0.02	<0.01	0.01
TAA pH 6.5	moles H+/t	11	<5	11	<5	8
Chromium Reducible Sulfur	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
a-Chromium Reducible Sulfur	moles H+/t	<3	<3	<3	<3	<3
Shci	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
Skci	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
S _{NAS}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.022	0.0090	0.021	0.0090	0.014
a-Net Acidity	moles H+/t	14	5.8	13	5.6	8.6
Liming rate	kg CaCO₃/t	1	<0.75	1	<0.75	<0.75
a-Net Acidity without ANCE	moles H+/t	14	5.8	13	5.6	8.6
Liming rate without ANCE	kg CaCO₃/t	1.0	<0.75	0.99	<0.75	<0.75
s-Net Acidity without ANCE	%w/w S	0.022	0.0090	0.021	0.0090	0.014

Chromium Suite						
Our Reference		306476-11	306476-12	306476-13	306476-14	306476-15
Your Reference	UNITS	BH106	BH106	BH108	BH108	BH109
Depth		0.2	1.2	1.0	2.0	1.0
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
Date analysed	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
pH kcl	pH units	5.1	4.7	5.0	5.4	5.0
s-TAA pH 6.5	%w/w S	0.01	0.02	0.02	0.01	0.02
TAA pH 6.5	moles H+/t	7	12	15	8	14
Chromium Reducible Sulfur	%w/w	0.005	0.005	<0.005	<0.005	<0.005
a-Chromium Reducible Sulfur	moles H+/t	3	<3	<3	<3	<3
Sha	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
Skci	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
S _{NAS}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.017	0.024	0.027	0.012	0.022
a-Net Acidity	moles H+/t	10	15	17	7.5	14
Liming rate	kg CaCO₃/t	0.8	1	1	<0.75	1
a-Net Acidity without ANCE	moles H+/t	10	15	17	7.5	14
Liming rate without ANCE	kg CaCO₃/t	0.78	1.1	1.3	<0.75	1.0
s-Net Acidity without ANCE	%w/w S	0.017	0.024	0.027	0.012	0.022

Chromium Suite						
Our Reference		306476-16	306476-17	306476-18	306476-19	306476-20
Your Reference	UNITS	BH109	BH109	BH109	BH110	BH110
Depth		1.9	2.5	5.2	0.5	1.5
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
Date analysed	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
pH _{kcl}	pH units	4.7	4.9	5.3	5.2	4.5
s-TAA pH 6.5	%w/w S	0.04	0.02	0.01	<0.01	0.05
TAA pH 6.5	moles H+/t	26	11	6	6	31
Chromium Reducible Sulfur	%w/w	<0.005	0.005	<0.005	<0.005	<0.005
a-Chromium Reducible Sulfur	moles H+/t	<3	<3	<3	<3	<3
Shci	%w/w S	[NT]	[NT]	[NT]	[NT]	<0.005
S _{KCI}	%w/w S	[NT]	[NT]	[NT]	[NT]	<0.005
S _{NAS}	%w/w S	[NT]	[NT]	[NT]	[NT]	<0.005
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.044	0.022	0.010	0.011	0.052
a-Net Acidity	moles H+/t	27	14	6.5	7.1	33
Liming rate	kg CaCO₃ /t	2	1	<0.75	<0.75	2
a-Net Acidity without ANCE	moles H+/t	27	14	6.5	7.1	33
Liming rate without ANCE	kg CaCO₃ /t	2.1	1.0	<0.75	<0.75	2.4
s-Net Acidity without ANCE	%w/w S	0.044	0.022	0.010	0.011	0.052

Chromium Suite						
Our Reference		306476-21	306476-22	306476-23	306476-24	306476-25
Your Reference	UNITS	BH111	BH111	BH111	BH111	BH112
Depth		0.5	1.5	2.8	4.4	1.0
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
Date analysed	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
pH kcl	pH units	6.4	6.6	6.4	6.2	4.9
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	0.02
TAA pH 6.5	moles H+/t	<5	<5	<5	<5	15
Chromium Reducible Sulfur	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
a-Chromium Reducible Sulfur	moles H+/t	<3	<3	<3	<3	<3
Sнci	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
S _{KCI}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
S _{NAS}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
ANC _{BT}	% CaCO₃	[NT]	0.25	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	0.08	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	<0.005	<0.005	<0.005	0.0070	0.027
a-Net Acidity	moles H+/t	<5	<5	<5	<5	17
Liming rate	kg CaCO₃/t	<0.75	<0.75	<0.75	<0.75	1
a-Net Acidity without ANCE	moles H+/t	<5	<5	<5	<5	17
Liming rate without ANCE	kg CaCO₃/t	<0.75	<0.75	<0.75	<0.75	1.2
s-Net Acidity without ANCE	%w/w S	<0.005	<0.005	<0.005	0.0070	0.027

Chromium Suite				
Our Reference		306476-26	306476-27	306476-28
Your Reference	UNITS	BH112	BH113	BH113
Depth		2.0	0.3	1.0
Date Sampled		13-16/09/2022	13-16/09/2022	13-16/09/2022
Type of sample		Soil	Soil	Soil
Date prepared	-	30/09/2022	30/09/2022	30/09/2022
Date analysed	-	30/09/2022	30/09/2022	30/09/2022
pH _{kcl}	pH units	5.0	5.8	5.3
s-TAA pH 6.5	%w/w S	0.04	<0.01	0.02
TAA pH 6.5	moles H+/t	23	<5	11
Chromium Reducible Sulfur	%w/w	0.04	0.005	<0.005
a-Chromium Reducible Sulfur	moles H+/t	26	<3	<3
Shci	%w/w S	[NT]	[NT]	[NT]
Skci	%w/w S	[NT]	[NT]	[NT]
S _{NAS}	%w/w S	[NT]	[NT]	[NT]
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.078	0.0090	0.019
a-Net Acidity	moles H+/t	48	5.6	12
Liming rate	kg CaCO₃/t	4	<0.75	0.9
a-Net Acidity without ANCE	moles H+/t	48	5.6	12
Liming rate without ANCE	kg CaCO₃/t	3.6	<0.75	0.87
s-Net Acidity without ANCE	%w/w S	0.078	0.0090	0.019

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Net acidity including ANC has a safety factor of 1.5 applied. Neutralising value (NV) of 100% is assumed for liming rate. Based on National acid sulfate soils identification and laboratory methods manual June 2018. The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL results reported.

QUALITY	CONTROL:	sPOCAS	field test		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			28/09/2022	[NT]		[NT]	[NT]	28/09/2022	
Date analysed	-			28/09/2022	[NT]		[NT]	[NT]	28/09/2022	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	98	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	99	

QUALITY	CONTROL:	sPOCAS	field test	QUALITY CONTROL: sPOCAS field test						covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	[NT]		[NT]	[NT]	28/09/2022	
Date analysed	-			[NT]	[NT]		[NT]	[NT]	28/09/2022	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	99	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	99	

QUALI	TY CONTROL:	Chromiu	m Suite			Du	plicate		Spike Rec	overy_%
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			30/09/2022	1	30/09/2022	30/09/2022		30/09/2022	
Date analysed	-			30/09/2022	1	30/09/2022	30/09/2022		30/09/2022	
pH _{kcl}	pH units		Inorg-068	[NT]	1	4.8	4.8	0	96	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	1	<0.01	<0.01	0	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	<5	1	<5	<5	0	115	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	1	<0.005	<0.005	0	82	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	1	<3	<3	0	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	1		[NT]		[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	1		[NT]		[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	1		[NT]		[NT]	
ANC _{BT}	% CaCO₃	0.05	Inorg-068	<0.05	1		[NT]		[NT]	
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	1		[NT]		[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	1	0.0090	0.0090	0	[NT]	
a-Net Acidity	moles H+/t	5	Inorg-068	<5	1	5.3	5.6	6	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	<0.75	<0.75	0	[NT]	
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-068	<5	1	5.3	5.6	6	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	<0.75	<0.75	0	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	1	0.0090	0.0090	0	[NT]	

QUALITY	CONTROL:	Chromiu	m Suite			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	11	30/09/2022	30/09/2022		30/09/2022	
Date analysed	-			[NT]	11	30/09/2022	30/09/2022		30/09/2022	
pH _{kcl}	pH units		Inorg-068	[NT]	11	5.1	5.1	0	96	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	[NT]	11	0.01	0.01	0	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	[NT]	11	7	8	13	115	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	[NT]	11	0.005	<0.005	0	110	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	[NT]	11	3	<3	0	[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	[NT]	11	0.017	0.016	6	[NT]	
a-Net Acidity	moles H+/t	5	Inorg-068	[NT]	11	10	9.9	1	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	[NT]	11	0.8	<0.75	6	[NT]	
a-Net Acidity without ANCE	moles H+/t	5	Inorg-068	[NT]	11	10	9.9	1	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	[NT]	11	0.78	<0.75	4	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	[NT]	11	0.017	0.016	6	[NT]	

QUALITY CONTROL: Chromium Suite						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	30/09/2022	30/09/2022			[NT]
Date analysed	-			[NT]	21	30/09/2022	30/09/2022			[NT]
pH _{kcl}	pH units		Inorg-068	[NT]	21	6.4	6.3	2		[NT]
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	[NT]	21	<0.01	<0.01	0		[NT]
TAA pH 6.5	moles H+/t	5	Inorg-068	[NT]	21	<5	<5	0		[NT]
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	[NT]	21	<0.005	<0.005	0		[NT]
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	[NT]	21	<3	<3	0		[NT]
s-Net Acidity	%w/w S	0.005	Inorg-068	[NT]	21	<0.005	<0.005	0		[NT]
a-Net Acidity	moles H+/t	5	Inorg-068	[NT]	21	<5	<5	0		[NT]
Liming rate	kg CaCO₃/t	0.75	Inorg-068	[NT]	21	<0.75	<0.75	0		[NT]
a-Net Acidity without ANCE	moles H+/t	5	Inorg-068	[NT]	21	<5	<5	0		[NT]
Liming rate without ANCE	kg CaCO₃ /t	0.75	Inorg-068	[NT]	21	<0.75	<0.75	0		[NT]
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	[NT]	21	<0.005	<0.005	0		[NT]

Result Definitions			
NT	Not tested		
NA	Test not required		
INS	Insufficient sample for this test		
PQL	Practical Quantitation Limit		
<	Less than		
>	Greater than		
RPD	Relative Percent Difference		
LCS	Laboratory Control Sample		
NS	Not specified		
NEPM	National Environmental Protection Measure		
NR	Not Reported		

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 306476 Page | 15 of 15 Revision No: R00

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 316605

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Accounts Email, Ali Kandil
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2208888 - Gan Gan Anna Bay
Number of Samples	31 Soil
Date samples received	15/02/2023
Date completed instructions received	15/02/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	23/02/2023
Date of Issue	23/02/2023
NATA Accreditation Number 2901. The	nis document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Inorganics Supervisor Nick Sarlamis, Assistant Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		316605-1	316605-2	316605-3	316605-4	316605-5
Your Reference	UNITS	BH115	BH115	BH116	BH116	BH117
Depth		S/0.1	S/3.3	S/1.0	S/2.5	S/0.5
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
Date analysed	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
pH _F (field pH test)	pH Units	4.7	4.7	4.7	5.5	4.8
pH _{FOX} (field peroxide test)	pH Units	2.0	1.9	1.8	1.8	1.9
Reaction Rate*	-	Volcanic reaction	Volcanic reaction	Extreme reaction	Volcanic reaction	Medium reaction
sPOCAS field test						
Our Reference		316605-6	316605-7	316605-8	316605-9	316605-10
Your Reference	UNITS	BH117	BH118	BH118	BH119	BH119
Depth		S/1.5	S/0.5	S/3.5	S/1.0	S/2.0
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
Date analysed	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
pH _F (field pH test)	pH Units	5.1	4.6	5.2	4.5	7.0
pH _{FOX} (field peroxide test)	pH Units	1.6	2.4	2.5	1.7	2.2
Reaction Rate*	-	Volcanic reaction	Medium reaction	Volcanic reaction	Volcanic reaction	Medium reaction
sPOCAS field test						
Our Reference		316605-11	316605-12	316605-13	316605-14	316605-15
Your Reference	UNITS	BH120	BH120	BH121	BH121	BH122
Depth		S/0.5	S/1.5	S/0.2	S/1.5	S/1.0
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
Date analysed	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
pH _F (field pH test)	pH Units	4.3	4.7	4.2	4.4	6.0

pH Units

1.9

Volcanic reaction Volcanic reaction

2.7

Envirolab Reference: 316605 Revision No: R00

pH_{FOX} (field peroxide test)

Reaction Rate*

1.9

Volcanic reaction Volcanic reaction

1.8

1.8

Low reaction

sPOCAS field test						
Our Reference		316605-16	316605-17	316605-18	316605-19	316605-20
Your Reference	UNITS	BH122	BH123	BH123	BH124	BH124
Depth		S/3.5	S/0.5	S/1.5	S/1.5	S/3.5
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
Date analysed	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
pH _F (field pH test)	pH Units	6.2	5.7	6.2	4.9	5.4
pH _{FOX} (field peroxide test)	pH Units	2.4	2.0	1.9	1.8	3.2
Reaction Rate*	-	Medium reaction	Volcanic reaction	Volcanic reaction	Volcanic reaction	Low reaction

sPOCAS field test						
Our Reference		316605-21	316605-22	316605-23	316605-24	316605-25
Your Reference	UNITS	BH125	BH125	BH126	BH126	BH127
Depth		S/0.2	S/1.5	S/1.5	S/3.0	S/1.0
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
Date analysed	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023	21/02/2023
pH _F (field pH test)	pH Units	4.6	5.2	4.5	4.8	5.0
pH _{FOX} (field peroxide test)	pH Units	2.2	1.9	2.5	2.1	2.3
Reaction Rate*	-	Medium reaction	Medium reaction	Medium reaction	Volcanic reaction	Low reaction

sPOCAS field test					
Our Reference		316605-26	316605-27	316605-28	316605-29
Your Reference	UNITS	BH127	BH128	BH128	BH129
Depth		S/2.5	S/0.5	S/1.5	S/0.5
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023
Date analysed	-	21/02/2023	21/02/2023	21/02/2023	21/02/2023
pH _F (field pH test)	pH Units	5.2	5.1	4.3	4.5
pH _{FOX} (field peroxide test)	pH Units	1.9	2.4	2.6	3.2
Reaction Rate*	-	Medium reaction	Medium reaction	High reaction	Medium reaction

Chromium Suite						
Our Reference		316605-1	316605-2	316605-3	316605-4	316605-5
Your Reference	UNITS	BH115	BH115	BH116	BH116	BH117
Depth		S/0.1	S/3.3	S/1.0	S/2.5	S/0.5
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
Date analysed	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
рН ксі	pH units	3.8	4.2	4.1	4.2	3.9
s-TAA pH 6.5	%w/w S	0.38	0.04	0.06	0.04	0.26
TAA pH 6.5	moles H+/t	240	24	39	26	160
Chromium Reducible Sulfur	%w/w	0.03	0.08	0.07	0.15	0.01
a-Chromium Reducible Sulfur	moles H+/t	18	52	44	96	7
S _{HCI}	%w/w S	0.043	0.047	0.036	0.068	0.047
Skci	%w/w S	0.019	0.048	0.036	0.059	0.028
Snas	%w/w S	0.024	<0.005	<0.005	0.010	0.019
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.43	0.12	0.13	0.20	0.29
a-Net Acidity	moles H+/t	270	76	82	130	180
Liming rate	kg CaCO₃ /t	20	6	6	9.6	14
a-Net Acidity without ANCE	moles H+/t	270	76	82	130	180
Liming rate without ANCE	kg CaCO₃ /t	20	5.7	6.2	9.6	14
s-Net Acidity without ANCE	%w/w S	0.43	0.12	0.13	0.20	0.29

Chromium Suite						
Our Reference		316605-6	316605-7	316605-8	316605-9	316605-10
Your Reference	UNITS	BH117	BH118	BH118	BH119	BH119
Depth		S/1.5	S/0.5	S/3.5	S/1.0	S/2.0
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
Date analysed	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
pH _{kcl}	pH units	3.7	3.9	4.0	3.9	8.4
s-TAA pH 6.5	%w/w S	0.12	0.28	0.06	0.1	<0.01
TAA pH 6.5	moles H+/t	74	170	37	61	<5
Chromium Reducible Sulfur	%w/w	0.14	0.09	0.30	0.22	0.17
a-Chromium Reducible Sulfur	moles H+/t	88	56	180	130	100
Shci	%w/w S	0.24	0.072	0.11	0.11	<0.005
S _{KCI}	%w/w S	0.28	0.062	0.11	0.096	[NT]
Snas	%w/w S	<0.005	0.009	<0.005	0.009	[NT]
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	0.75
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	0.24
s-Net Acidity	%w/w S	0.26	0.38	0.36	0.32	0.0060
a-Net Acidity	moles H ⁺ /t	160	240	220	200	<5
Liming rate	kg CaCO₃ /t	12	18	17	15	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	160	240	220	200	100
Liming rate without ANCE	kg CaCO₃ /t	12	18	17	15	7.8
s-Net Acidity without ANCE	%w/w S	0.26	0.38	0.36	0.32	0.17

Chromium Suite						
Our Reference		316605-11	316605-12	316605-13	316605-14	316605-15
Your Reference	UNITS	BH120	BH120	BH121	BH121	BH122
Depth		S/0.5	S/1.5	S/0.2	S/1.5	S/1.0
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
Date analysed	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
рН ка	pH units	3.9	3.7	3.7	4.0	4.0
s-TAA pH 6.5	%w/w S	0.18	0.20	0.36	0.1	0.14
TAA pH 6.5	moles H+/t	110	120	220	61	86
Chromium Reducible Sulfur	%w/w	<0.005	0.99	0.02	0.24	0.59
a-Chromium Reducible Sulfur	moles H+/t	<3	620	16	150	370
Shci	%w/w S	0.040	0.31	0.061	0.075	0.16
Skci	%w/w S	0.026	0.43	0.035	0.094	0.10
S _{NAS}	%w/w S	0.013	<0.005	0.026	<0.005	0.056
АNСвт	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.19	1.2	0.41	0.34	0.78
a-Net Acidity	moles H+/t	120	740	260	210	490
Liming rate	kg CaCO₃ /t	9.0	56	19	16	37
a-Net Acidity without ANCE	moles H+/t	120	740	260	210	490
Liming rate without ANCE	kg CaCO₃ /t	9.0	56	19	16	37
s-Net Acidity without ANCE	%w/w S	0.19	1.2	0.41	0.34	0.78

Chromium Suite						
Our Reference		316605-16	316605-17	316605-18	316605-19	316605-20
Your Reference	UNITS	BH122	BH123	BH123	BH124	BH124
Depth		S/3.5	S/0.5	S/1.5	S/1.5	S/3.5
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
Date analysed	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
pH kcl	pH units	5.3	4.4	4.6	4.2	5.1
s-TAA pH 6.5	%w/w S	<0.01	0.04	0.02	0.09	0.01
TAA pH 6.5	moles H+/t	<5	22	13	58	6
Chromium Reducible Sulfur	%w/w	0.05	0.54	0.30	0.25	0.006
a-Chromium Reducible Sulfur	moles H+/t	30	340	190	160	4
Shci	%w/w S	[NT]	0.11	[NT]	0.037	[NT]
Skci	%w/w S	[NT]	0.090	[NT]	0.042	[NT]
S _{NAS}	%w/w S	[NT]	0.020	[NT]	<0.005	[NT]
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.056	0.60	0.32	0.35	0.016
a-Net Acidity	moles H+/t	35	370	200	220	9.8
Liming rate	kg CaCO₃ /t	3	28	15	16	<0.75
a-Net Acidity without ANCE	moles H+/t	35	370	200	220	9.8
Liming rate without ANCE	kg CaCO₃ /t	2.6	28	15	16	<0.75
s-Net Acidity without ANCE	%w/w S	0.056	0.60	0.32	0.35	0.016

Chromium Suite						
Our Reference		316605-21	316605-22	316605-23	316605-24	316605-25
Your Reference	UNITS	BH125	BH125	BH126	BH126	BH127
Depth		S/0.2	S/1.5	S/1.5	S/3.0	S/1.0
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
Date analysed	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
pH _{kcl}	pH units	4.1	5.1	4.2	4.6	4.3
s-TAA pH 6.5	%w/w S	0.09	0.03	0.09	0.02	0.05
TAA pH 6.5	moles H+/t	58	22	54	13	30
Chromium Reducible Sulfur	%w/w	0.01	0.01	0.03	0.06	0.04
a-Chromium Reducible Sulfur	moles H+/t	8	7	16	39	28
Shci	%w/w S	0.017	[NT]	0.012	[NT]	0.012
Skci	%w/w S	0.009	[NT]	0.008	[NT]	0.011
Snas	%w/w S	0.008	[NT]	<0.005	[NT]	<0.005
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.12	0.046	0.12	0.083	0.094
a-Net Acidity	moles H+/t	72	29	73	52	59
Liming rate	kg CaCO₃/t	5	2	5	4	4
a-Net Acidity without ANCE	moles H+/t	72	29	73	52	59
Liming rate without ANCE	kg CaCO₃/t	5.4	2.2	5.5	3.9	4.4
s-Net Acidity without ANCE	%w/w S	0.12	0.046	0.12	0.083	0.094

Chromium Suite					
Our Reference		316605-26	316605-27	316605-28	316605-29
Your Reference	UNITS	BH127	BH128	BH128	BH129
Depth		S/2.5	S/0.5	S/1.5	S/0.5
Date Sampled		07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23	07/02/23- 08/02/23
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023
Date analysed	-	23/02/2023	23/02/2023	23/02/2023	23/02/2023
pH _{kcl}	pH units	4.7	4.3	4.0	4.0
s-TAA pH 6.5	%w/w S	0.02	0.05	0.08	0.21
TAA pH 6.5	moles H+/t	12	30	47	130
Chromium Reducible Sulfur	%w/w	0.06	0.007	0.15	0.1
a-Chromium Reducible Sulfur	moles H+/t	36	4	91	60
Shci	%w/w S	[NT]	0.007	0.026	0.027
Skci	%w/w S	[NT]	<0.005	0.028	0.011
SNAS	%w/w S	[NT]	<0.005	<0.005	0.016
ANCBT	% CaCO₃	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.078	0.059	0.22	0.32
a-Net Acidity	moles H+/t	48	37	140	200
Liming rate	kg CaCO₃ /t	4	3	10	15
a-Net Acidity without ANCE	moles H+/t	48	37	140	200
Liming rate without ANCE	kg CaCO₃ /t	3.6	2.8	10	15
s-Net Acidity without ANCE	%w/w S	0.078	0.059	0.22	0.32

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Net acidity including ANC has a safety factor of 1.5 applied. Neutralising value (NV) of 100% is assumed for liming rate. Based on National acid sulfate soils identification and laboratory methods manual June 2018. The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL results reported.

Envirolab Reference: 316605

Revision No: R00

QUALITY		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023	
Date analysed	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	

QUALITY CONTROL: sPOCAS field test							Duplicate			covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	[NT]		[NT]	[NT]	21/02/2023	
Date analysed	-			[NT]	[NT]		[NT]	[NT]	21/02/2023	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	

QUALITY		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			[NT]	[NT]		[NT]	[NT]	21/02/2023	
Date analysed	-			[NT]	[NT]		[NT]	[NT]	21/02/2023	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	

QUALIT	Y CONTROL:	Chromiu	m Suite			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			23/02/2023	1	23/02/2023	23/02/2023		23/02/2023	
Date analysed	-			23/02/2023	1	23/02/2023	23/02/2023		23/02/2023	
pH _{kcl}	pH units		Inorg-068	[NT]	1	3.8	3.9	3	101	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	1	0.38	0.46	19	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	<5	1	240	290	19	120	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	1	0.03	0.03	0	109	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	1	18	22	20	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	1	0.043	0.043	0	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	1	0.019	0.018	5	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	1	0.024	0.026	8	[NT]	
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	<0.05	1		[NT]		97	
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	1		[NT]		[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	1	0.43	0.52	19	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-068	<5	1	270	320	17	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	20	24	18	[NT]	
a-Net Acidity without ANCE	moles H+/t	5	Inorg-068	<5	1	270	320	17	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	20	24	18	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	1	0.43	0.52	19	[NT]	

Envirolab Reference: 316605

Revision No: R00

QUALIT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	11	23/02/2023	23/02/2023		23/02/2023	
Date analysed	-			[NT]	11	23/02/2023	23/02/2023		23/02/2023	
pH _{kcl}	pH units		Inorg-068	[NT]	11	3.9	3.9	0	100	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	[NT]	11	0.18	0.18	0	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	[NT]	11	110	110	0	123	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	[NT]	11	<0.005	<0.005	0	101	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	[NT]	11	<3	<3	0	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-068	[NT]	11	0.040	0.040	0	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	[NT]	11	0.026	0.021	21	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	[NT]	11	0.013	0.018	32	[NT]	
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	[NT]	11		[NT]		97	
s-Net Acidity	%w/w S	0.005	Inorg-068	[NT]	11	0.19	0.20	5	[NT]	
a-Net Acidity	moles H+/t	5	Inorg-068	[NT]	11	120	120	0	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	[NT]	11	9.0	9.2	2	[NT]	
a-Net Acidity without ANCE	moles H+/t	5	Inorg-068	[NT]	11	120	120	0	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	[NT]	11	9.0	9.2	2	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	[NT]	11	0.19	0.20	5	[NT]	

QUALITY	CONTROL:	Chromiu	m Suite			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	23/02/2023	23/02/2023			[NT]
Date analysed	-			[NT]	21	23/02/2023	23/02/2023			[NT]
pH _{kcl}	pH units		Inorg-068	[NT]	21	4.1	4.1	0		[NT]
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	[NT]	21	0.09	0.08	12		[NT]
TAA pH 6.5	moles H+/t	5	Inorg-068	[NT]	21	58	49	17		[NT]
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	[NT]	21	0.01	0.01	0		[NT]
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	[NT]	21	8	8	0		[NT]
S _{HCI}	%w/w S	0.005	Inorg-068	[NT]	21	0.017	0.017	0		[NT]
S _{KCI}	%w/w S	0.005	Inorg-068	[NT]	21	0.009	0.008	12		[NT]
S _{NAS}	%w/w S	0.005	Inorg-068	[NT]	21	0.008	0.009	12		[NT]
s-Net Acidity	%w/w S	0.005	Inorg-068	[NT]	21	0.12	0.10	18		[NT]
a-Net Acidity	moles H+/t	5	Inorg-068	[NT]	21	72	62	15		[NT]
Liming rate	kg CaCO₃/t	0.75	Inorg-068	[NT]	21	5	5	0		[NT]
a-Net Acidity without ANCE	moles H+/t	5	Inorg-068	[NT]	21	72	62	15		[NT]
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	[NT]	21	5.4	4.7	14		[NT]
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	[NT]	21	0.12	0.10	18		[NT]

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 349008

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Wailen Su
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2208888: Gan Gan Road, Anna Bay, NSW
Number of Samples	26 Soil
Date samples received	16/04/2024
Date completed instructions received	16/04/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	23/04/2024					
Date of Issue	23/04/2024					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Chromium Suite						
Our Reference		349008-1	349008-2	349008-3	349008-4	349008-5
Your Reference	UNITS	8888/BH133/0.4- 0.5	8888/BH133/1.4- 1.5	8888/BH133/2.5- 2.6	8888/BH133/3.5- 3.6	8888/BH134/0.4- 0.5
Date Sampled		12/04/2024	12/04/2024	12/04/2024	12/04/2024	12/04/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/04/2024	16/04/2024	16/04/2024	16/04/2024	16/04/2024
Date analysed	-	17/04/2024	17/04/2024	17/04/2024	17/04/2024	17/04/2024
рН ксі	pH units	3.7	3.8	4.4	4.3	4.1
s-TAA pH 6.5	%w/w S	0.08	0.1	0.02	0.02	0.05
TAA pH 6.5	moles H+/t	49	61	14	12	33
Chromium Reducible Sulfur	%w/w	0.04	0.21	0.13	0.09	0.04
a-Chromium Reducible Sulfur	moles H+/t	24	130	82	58	24
Shci	%w/w S	0.18	0.082	0.020	0.026	0.087
Skci	%w/w S	0.058	0.053	0.023	0.032	0.027
SNAS	%w/w S	0.23	0.058	<0.005	<0.005	0.12
ANCBT	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.35	0.37	0.15	0.11	0.21
a-Net Acidity	moles H+/t	180	220	96	71	110
Liming rate	kg CaCO₃/t	14	17	7	5	8.5
a-Net Acidity without ANCE	moles H+/t	180	220	96	71	110
Liming rate without ANCE	kg CaCO₃/t	14	17	7.2	5.3	8.5
s-Net Acidity without ANCE	%w/w S	0.29	0.36	0.15	0.11	0.18

Chromium Suite						
Our Reference		349008-6	349008-7	349008-8	349008-9	349008-10
Your Reference	UNITS	8888/BH134/0.9- 1.0	8888/BH134/2.0- 2.1	8888/BH134/2.4- 2.5	8888/BH134/3.0- 3.1	8888/BH135/0.4- 0.5
Date Sampled		12/04/2024	12/04/2024	12/04/2024	12/04/2024	12/04/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/04/2024	16/04/2024	16/04/2024	16/04/2024	16/04/2024
Date analysed	-	17/04/2024	17/04/2024	17/04/2024	17/04/2024	17/04/2024
pH kcl	pH units	3.6	3.8	7.6	7.1	3.5
s-TAA pH 6.5	%w/w S	0.18	0.06	<0.01	<0.01	0.16
TAA pH 6.5	moles H+/t	110	36	<5	<5	99
Chromium Reducible Sulfur	%w/w	0.01	0.07	0.37	0.37	0.02
a-Chromium Reducible Sulfur	moles H+/t	8	45	230	230	12
Shci	%w/w S	0.069	0.043	[NT]	[NT]	0.084
Skci	%w/w S	0.028	0.031	[NT]	[NT]	0.025
SNAS	%w/w S	0.081	0.022	[NT]	[NT]	0.12
ANC _{BT}	% CaCO₃	[NT]	[NT]	2.1	1.4	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	0.67	0.43	[NT]
s-Net Acidity	%w/w S	0.27	0.15	<0.005	0.082	0.30
a-Net Acidity	moles H+/t	160	92	<5	51	170
Liming rate	kg CaCO₃ /t	12	7	<0.75	4	13
a-Net Acidity without ANCE	moles H+/t	160	92	230	230	170
Liming rate without ANCE	kg CaCO₃ /t	12	6.9	17	17	13
s-Net Acidity without ANCE	%w/w S	0.25	0.15	0.37	0.37	0.27

Chromium Suite						
Our Reference		349008-11	349008-12	349008-13	349008-14	349008-15
Your Reference	UNITS	8888/BH135/0.9- 1.0	8888/BH135/1.9- 2.0	8888/BH135/2.4- 2.5	8888/BH135/3.4- 3.5	8888/BH136/0.9- 1.0
Date Sampled		12/04/2024	12/04/2024	12/04/2024	12/04/2024	12/04/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/04/2024	16/04/2024	16/04/2024	16/04/2024	16/04/2024
Date analysed	-	17/04/2024	17/04/2024	17/04/2024	17/04/2024	17/04/2024
рН ксі	pH units	3.6	3.7	4.0	4.3	3.7
s-TAA pH 6.5	%w/w S	0.20	0.08	0.03	0.02	0.14
TAA pH 6.5	moles H+/t	120	49	21	10	86
Chromium Reducible Sulfur	%w/w	0.03	0.41	0.28	0.28	0.03
a-Chromium Reducible Sulfur	moles H+/t	17	260	180	180	16
Shci	%w/w S	0.12	0.13	0.053	0.037	0.049
Skci	%w/w S	0.056	0.10	0.055	0.041	0.026
S _{NAS}	%w/w S	0.13	0.064	<0.005	<0.005	0.046
ANC _{BT}	% CaCO ₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.35	0.56	0.32	0.30	0.21
a-Net Acidity	moles H+/t	200	340	200	190	120
Liming rate	kg CaCO₃ /t	15	25	15	14	9.3
a-Net Acidity without ANCE	moles H+/t	200	340	200	190	120
Liming rate without ANCE	kg CaCO₃ /t	15	25	15	14	9.3
s-Net Acidity without ANCE	%w/w S	0.32	0.54	0.32	0.30	0.20

Chromium Suite						
Our Reference		349008-16	349008-17	349008-18	349008-19	349008-20
Your Reference	UNITS	8888/BH136/1.5- 1.6	8888/BH136/2.0- 2.1	8888/BH136/3.0- 3.1	8888/BH137/0.4- 0.5	8888/BH137/1.5- 1.6
Date Sampled		12/04/2024	12/04/2024	12/04/2024	12/04/2024	12/04/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/04/2024	16/04/2024	16/04/2024	16/04/2024	16/04/2024
Date analysed	-	17/04/2024	17/04/2024	17/04/2024	17/04/2024	17/04/2024
рН ксі	pH units	4.1	4.5	4.2	3.8	3.8
s-TAA pH 6.5	%w/w S	0.04	0.01	0.02	0.1	0.1
TAA pH 6.5	moles H+/t	26	8	10	61	61
Chromium Reducible Sulfur	%w/w	0.13	0.17	<0.005	0.07	0.44
a-Chromium Reducible Sulfur	moles H+/t	79	110	<3	46	280
Shci	%w/w S	0.025	[NT]	0.031	0.048	0.11
Skci	%w/w S	0.026	[NT]	0.034	0.031	0.11
SNAS	%w/w S	<0.005	[NT]	<0.005	0.033	0.009
ANCBT	% CaCO ₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.17	0.18	0.016	0.20	0.55
a-Net Acidity	moles H+/t	110	110	10	120	340
Liming rate	kg CaCO₃/t	7.9	8.5	0.8	9.2	26
a-Net Acidity without ANCE	moles H+/t	110	110	10	120	340
Liming rate without ANCE	kg CaCO₃/t	7.9	8.5	0.75	9.2	26
s-Net Acidity without ANCE	%w/w S	0.17	0.18	0.016	0.20	0.55

Chromium Suite						
Our Reference		349008-21	349008-22	349008-23	349008-24	349008-25
Your Reference	UNITS	8888/BH137/2.5- 2.6	8888/BH137/3.5- 3.6	8888/BH138/0.9- 1.0	8888/BH138/2.0- 2.1	8888/BH138/3.0- 3.1
Date Sampled		12/04/2024	12/04/2024	12/04/2024	12/04/2024	12/04/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/04/2024	16/04/2024	16/04/2024	16/04/2024	16/04/2024
Date analysed	-	17/04/2024	17/04/2024	17/04/2024	17/04/2024	17/04/2024
pH kd	pH units	4.3	4.1	3.8	4.4	4.4
s-TAA pH 6.5	%w/w S	0.01	0.02	0.1	0.02	0.01
TAA pH 6.5	moles H+/t	7	13	61	10	9
Chromium Reducible Sulfur	%w/w	0.29	0.37	0.03	0.02	0.13
a-Chromium Reducible Sulfur	moles H+/t	180	230	19	12	82
Shci	%w/w S	0.076	0.087	0.021	0.008	0.032
Skci	%w/w S	0.082	0.085	0.014	0.012	0.036
Snas	%w/w S	<0.005	<0.005	0.015	<0.005	<0.005
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.30	0.39	0.14	0.036	0.15
a-Net Acidity	moles H+/t	190	250	87	22	91
Liming rate	kg CaCO₃ /t	14	18	7	2	7
a-Net Acidity without ANCE	moles H+/t	190	250	87	22	91
Liming rate without ANCE	kg CaCO₃ /t	14	18	6.5	1.7	6.9
s-Net Acidity without ANCE	%w/w S	0.30	0.39	0.14	0.036	0.15

Chromium Suite		
Our Reference		349008-26
Your Reference	UNITS	8888/BH138/3.9- 4.0
Date Sampled		12/04/2024
Type of sample		Soil
Date prepared	-	16/04/2024
Date analysed	-	17/04/2024
рН ксі	pH units	5.0
s-TAA pH 6.5	%w/w S	<0.01
TAA pH 6.5	moles H+/t	<5
Chromium Reducible Sulfur	%w/w	<0.005
a-Chromium Reducible Sulfur	moles H+/t	<3
Sнa	%w/w S	[NT]
Ska	%w/w S	[NT]
SNAS	%w/w S	[NT]
ANC _{BT}	% CaCO₃	[NT]
s-ANC _{BT}	%w/w S	[NT]
s-Net Acidity	%w/w S	0.0080
a-Net Acidity	moles H+/t	<5
Liming rate	kg CaCO₃ /t	<0.75
a-Net Acidity without ANCE	moles H+/t	<5
Liming rate without ANCE	kg CaCO₃ /t	<0.75
s-Net Acidity without ANCE	%w/w S	0.0080

Envirolab Reference: 349008

Revision No: R00

Method ID	Methodology Summary
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity.
	Net acidity including ANC has a safety factor of 1.5 applied.
	Neutralising value (NV) of 100% is assumed for liming rate.
	The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL result. However, it has been applied in the SNAS calculation: SNAS % = (SHCL-SKCL)x2

Envirolab Reference: 349008

QUALI ⁻	Y CONTROL:	Chromiu	m Suite			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			16/04/2024	1	16/04/2024	16/04/2024		16/04/2024	
Date analysed	-			17/04/2024	1	17/04/2024	17/04/2024		17/04/2024	
pH _{kcl}	pH units		Inorg-068	[NT]	1	3.7	3.7	0	96	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	1	0.08	0.08	0	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	<5	1	49	49	0	96	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	1	0.04	0.04	0	97	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	1	24	24	0	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	1	0.18	0.18	0	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	1	0.058	0.060	3	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	1	0.23	0.24	4	[NT]	
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	<0.05	1		[NT]		100	
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	1		[NT]		[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	1	0.35	0.35	0	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-068	<5	1	180	180	0	[NT]	
iming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	14	14	0	[NT]	
-Net Acidity without ANCE	moles H+/t	5	Inorg-068	<5	1	180	180	0	[NT]	
iming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	14	14	0	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	1	0.29	0.29	0	[NT]	

QUALIT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	11	16/04/2024	16/04/2024		16/04/2024	
Date analysed	-			[NT]	11	17/04/2024	17/04/2024		17/04/2024	
pH _{kcl}	pH units		Inorg-068	[NT]	11	3.6	3.6	0	96	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	[NT]	11	0.20	0.20	0	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	[NT]	11	120	120	0	95	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	[NT]	11	0.03	0.03	0	96	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	[NT]	11	17	17	0	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-068	[NT]	11	0.12	0.12	0	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	[NT]	11	0.056	0.055	2	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	[NT]	11	0.13	0.13	0	[NT]	
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	[NT]	11		[NT]		100	
s-Net Acidity	%w/w S	0.005	Inorg-068	[NT]	11	0.35	0.36	3	[NT]	
a-Net Acidity	moles H+/t	5	Inorg-068	[NT]	11	200	200	0	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	[NT]	11	15	15	0	[NT]	
a-Net Acidity without ANCE	moles H+/t	5	Inorg-068	[NT]	11	200	200	0	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	[NT]	11	15	15	0	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	[NT]	11	0.32	0.32	0	[NT]	

QUALITY CONTROL: Chromium Suite						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	16/04/2024	16/04/2024			[NT]
Date analysed	-			[NT]	21	17/04/2024	17/04/2024			[NT]
pH _{kcl}	pH units		Inorg-068	[NT]	21	4.3	4.3	0		[NT]
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	[NT]	21	0.01	0.01	0		[NT]
TAA pH 6.5	moles H+/t	5	Inorg-068	[NT]	21	7	7	0		[NT]
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	[NT]	21	0.29	0.29	0		[NT]
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	[NT]	21	180	180	0		[NT]
S _{HCI}	%w/w S	0.005	Inorg-068	[NT]	21	0.076	0.075	1		[NT]
S _{KCI}	%w/w S	0.005	Inorg-068	[NT]	21	0.082	0.078	5		[NT]
S _{NAS}	%w/w S	0.005	Inorg-068	[NT]	21	<0.005	<0.005	0		[NT]
s-Net Acidity	%w/w S	0.005	Inorg-068	[NT]	21	0.30	0.30	0		[NT]
a-Net Acidity	moles H+/t	5	Inorg-068	[NT]	21	190	190	0		[NT]
Liming rate	kg CaCO₃/t	0.75	Inorg-068	[NT]	21	14	14	0		[NT]
a-Net Acidity without ANCE	moles H+/t	5	Inorg-068	[NT]	21	190	190	0		[NT]
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	[NT]	21	14	14	0		[NT]
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	[NT]	21	0.30	0.30	0		[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

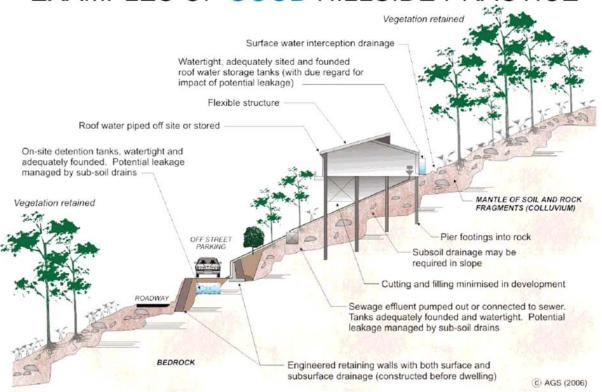
Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

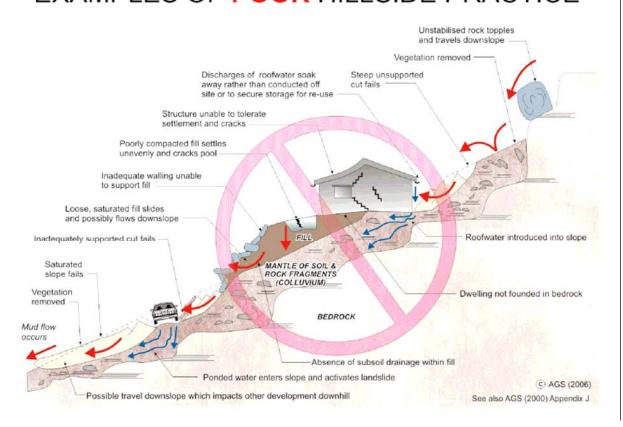
Appendix G – Hillside Construction Guidelines (AGS, 2007)

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION


GOOD ENGINEERING PRACTICE

ADVICE


POOR ENGINEERING PRACTICE

GEOTECHNICAL	Obtain advice from a qualified, experienced geotechnical practitioner at early	Prepare detailed plan and start site works before
ASSESSMENT	stage of planning and before site works.	geotechnical advice.
PLANNING	Ive to the control of	D 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.	Plan development without regard for the Risk.
DESIGN AND CON	STRUCTION	
HOUSE DESIGN	Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding. Consider use of split levels.	Floor plans which require extensive cutting and filling. Movement intolerant structures.
	Use decks for recreational areas where appropriate.	
SITE CLEARING	Retain natural vegetation wherever practicable.	Indiscriminately clear the site.
ACCESS & DRIVEWAYS	Satisfy requirements below for cuts, fills, retaining walls and drainage. Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.	Excavate and fill for site access before geotechnical advice.
EARTHWORKS	Retain natural contours wherever possible.	Indiscriminatory bulk earthworks.
Cuts	Minimise depth. Support with engineered retaining walls or batter to appropriate slope. Provide drainage measures and erosion control.	Large scale cuts and benching. Unsupported cuts. Ignore drainage requirements
FILLS	Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall. Provide surface drainage and appropriate subsurface drainage.	Loose or poorly compacted fill, which if it fails, may flow a considerable distance including onto property below. Block natural drainage lines. Fill over existing vegetation and topsoil. Include stumps, trees, vegetation, topsoil, boulders, building rubble etc in fill.
ROCK OUTCROPS & BOULDERS	Remove or stabilise boulders which may have unacceptable risk. Support rock faces where necessary.	Disturb or undercut detached blocks or boulders.
RETAINING WALLS	Engineer design to resist applied soil and water forces. Found on rock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above. Construct wall as soon as possible after cut/fill operation.	Construct a structurally inadequate wall such as sandstone flagging, brick or unreinforced blockwork. Lack of subsurface drains and weepholes.
FOOTINGS	Found within rock where practicable. Use rows of piers or strip footings oriented up and down slope. Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.	Found on topsoil, loose fill, detached boulders or undercut cliffs.
SWIMMING POOLS	Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.	
DRAINAGE	**	
SURFACE	Provide at tops of cut and fill slopes. Discharge to street drainage or natural water courses. Provide general falls to prevent blockage by siltation and incorporate silt traps. Line to minimise infiltration and make flexible where possible. Special structures to dissipate energy at changes of slope and/or direction.	Discharge at top of fills and cuts. Allow water to pond on bench areas.
Subsurface	Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.	Discharge roof runoff into absorption trenches.
SEPTIC & SULLAGE	Usually requires pump-out or mains sewer systems; absorption trenches may be possible in some areas if risk is acceptable. Storage tanks should be water-tight and adequately founded.	Discharge sullage directly onto and into slopes. Use absorption trenches without consideration of landslide risk.
EROSION CONTROL & LANDSCAPING	Control erosion as this may lead to instability. Revegetate cleared area.	Failure to observe earthworks and drainage recommendations when landscaping.
	ITE VISITS DURING CONSTRUCTION	
DRAWINGS	Building Application drawings should be viewed by geotechnical consultant	
SITE VISITS	Site Visits by consultant may be appropriate during construction/	
	MAINTENANCE BY OWNER	
OWNER'S RESPONSIBILITY	Clean drainage systems; repair broken joints in drains and leaks in supply pipes. Where structural distress is evident see advice.	
	If seepage observed, determine causes or seek advice on consequences.	

EXAMPLES OF GOOD HILLSIDE PRACTICE

EXAMPLES OF **POOR** HILLSIDE PRACTICE

Appendix H – General Geotechnical Recommendations

Geotechnical Recommendations

Important Recommendations About Your Site (1 of 2)

These general geotechnical recommendations have been prepared by Martens to help you deliver a safe work site, to comply with your obligations, and to deliver your project. Not all are necessarily relevant to this report but are included as general reference. Any specific recommendations made in the report will override these recommendations.

Batter Slopes

Excavations in soil and extremely low to very low strength rock exceeding $0.75\,\mathrm{m}$ depth should be battered back at grades of no greater than 1 Vertical (V): 2 Horizontal (H) for temporary slopes (unsupported for less than 1 month) and 1 V: 3 H for longer term unsupported slopes.

Vertical excavation may be carried out in medium or higher strength rock, where encountered, subject to inspection and confirmation by a geotechnical engineer. Long term and short term unsupported batters should be protected against erosion and rock weathering due to, for example, stormwater run-off.

Batter angles may need to be revised depending on the presence of bedding partings or adversely oriented joints in the exposed rock, and are subject to on-site inspection and confirmation by a geotechnical engineer. Unsupported excavations deeper than 1.0 m should be assessed by a geotechnical engineer for slope instability risk.

Any excavated rock faces should be inspected during construction by a geotechnical engineer to determine whether any additional support, such as rock bolts or shotcrete, is required.

Earthworks

Earthworks should be carried out following removal of any unsuitable materials and in accordance with AS3798 (2007). A qualified geotechnical engineer should inspect the condition of prepared surfaces to assess suitability as foundation for future fill placement or load application.

Earthworks inspections and compliance testing should be carried out in accordance with Sections 5 and 8 of AS3798 (2007), with testing to be carried out by a National Association of Testing Authorities (NATA) accredited testing laboratory.

Excavations

All excavation work should be completed with reference to the Work Health and Safety (Excavation Work) Code of Practice (2015), by Safe Work Australia. Excavations into rock may be undertaken as follows:

- 1. Extremely low to low strength rock conventional hydraulic earthmoving equipment.
- 2. <u>Medium strength or stronger rock</u> hydraulic earthmoving equipment with rock hammer or ripping tyne attachment.

Exposed rock faces and loose boulders should be monitored to assess risk of block / boulder movement, particularly as a result of excavation vibrations.

Fill

Subject to any specific recommendations provided in this report, any fill imported to site is to comprise approved material with maximum particle size of two thirds the final layer thickness. Fill should be placed in horizontal layers of not more than 300 mm loose thickness, however, the layer thickness should be appropriate for the adopted compaction plant.

Foundations

All exposed foundations should be inspected by a geotechnical engineer prior to footing construction to confirm encountered conditions satisfy design assumptions and that the base of all excavations is free from loose or softened material and water. Water that has ponded in the base of excavations and any resultant softened material is to be removed prior to footing construction.

Footings should be constructed with minimal delay following excavation. If a delay in construction is anticipated, we recommend placing a concrete blinding layer of at least 50 mm thickness in shallow footings or mass concrete in piers / piles to protect exposed foundations.

A geotechnical engineer should confirm any design bearing capacity values, by further assessment during construction, as necessary.

Shoring - Anchors

Where there is a requirement for either soil or rock anchors, or soil nailing, and these structures penetrate past a property boundary, appropriate permission from the adjoining land owner must be obtained prior to the installation of these structures.

Shoring - Permanent

Permanent shoring techniques may be used as an alternative to temporary shoring. The design of such structures should be in accordance with the findings of this report and any further testing recommended by this report. Permanent shoring may include [but not be limited to] reinforced block work walls, contiguous and semi contiguous pile walls, secant pile walls and soldier pile walls with or without reinforced shotcrete infill panels. The choice of shoring system will depend on the type of structure, project budget and site specific geotechnical conditions.

Permanent shoring systems are to be engineer designed and backfilled with suitable granular

Important Recommendations About Your Site (2 of 2)

material and free-draining drainage material. Backfill should be placed in maximum 100 mm thick layers compacted using a hand operated compactor. Care should be taken to ensure excessive compaction stresses are not transferred to retaining walls.

Shoring design should consider any surcharge loading from sloping / raised ground behind shoring structures, live loads, new structures, construction equipment, backfill compaction and static water pressures. All shoring systems shall be provided with adequate foundation designs.

Suitable drainage measures, such as geotextile enclosed 100 mm agricultural pipes embedded in free-draining gravel, should be included to redirect water that may collect behind the shoring structure to a suitable discharge point.

Shoring - Temporary

In the absence of providing acceptable excavation batters, excavations should be supported by suitably designed and installed temporary shoring / retaining structures to limit lateral deflection of excavation faces and associated ground surface settlements.

Soil Erosion Control

Removal of any soil overburden should be performed in a manner that reduces the risk of sedimentation occurring in any formal stormwater drainage system, on neighbouring land and in receiving waters. Where possible, this may be achieved by one or more of the following means:

- 1. Maintain vegetation where possible
- 2. Disturb minimal areas during excavation
- 3. Revegetate disturbed areas if possible

All spoil on site should be properly controlled by erosion control measures to prevent transportation of sediments off-site. Appropriate soil erosion control methods in accordance with Landcom (2004) shall be required.

Trafficability and Access

Consideration should be given to the impact of the proposed works and site subsurface conditions on trafficability within the site e.g. wet clay soils will lead to poor trafficability by tyred plant or vehicles.

Where site access is likely to be affected by any site works, construction staging should be organised such that any impacts on adequate access are minimised as best as possible.

Vibration Management

Where excavation is to be extended into medium or higher strength rock, care will be required when using a rock hammer to limit potential structural distress from excavation-induced vibrations where nearby structures may be affected by the works.

To limit vibrations, we recommend limiting rock hammer size and set frequency, and setting the hammer parallel to bedding planes and along defect planes, where possible, or as advised by a geotechnical engineer. We recommend limiting vibration peak particle velocities (PPV) caused by construction equipment or resulting from excavation at the site to 5 mm/s (AS 2187.2, 2006, Appendix J).

Waste – Spoil and Water

Soil to be disposed off-site should be classified in accordance with the relevant State Authority guidelines and requirements.

Any collected waste stormwater or groundwater should also be tested prior to discharge to ensure contaminant levels (where applicable) are appropriate for the nominated discharge location.

MA can complete the necessary classification and testing if required. Time allowance should be made for such testing in the construction program.

Water Management - Groundwater

If the proposed works are likely to intersect ephemeral or permanent groundwater levels, the management of any potential acid soil drainage should be considered. If groundwater tables are likely to be lowered, this should be further discussed with the relevant State Government Agency.

Water Management – Surface Water

All surface runoff should be diverted away from excavation areas during construction works and prevented from accumulating in areas surrounding any retaining structures, footings or the base of excavations.

Any collected surface water should be discharged into a suitable Council approved drainage system and not adversely impact downslope surface and subsurface conditions.

All site discharges should be passed through a filter material prior to release. Sump and pump methods will generally be suitable for collection and removal of accumulated surface water within any excavations.

Contingency Plan

In the event that proposed development works cause an adverse impact on geotechnical hazards, overall site stability or adjacent properties, the following actions are to be undertaken:

- 1. Works shall cease immediately.
- The nature of the impact shall be documented and the reason(s) for the adverse impact investigated.
- A qualified geotechnical engineer should be consulted to provide further advice in relation to the issue.

Appendix I - Notes about this Report

Important Information About Your Report (1 of 2)

These notes have been prepared by Martens to help you interpret and understand the limitations of your report. Not all are necessarily relevant to all reports but are included as general reference.

Engineering Reports - Limitations

The recommendations presented in this report are based on limited investigations and include specific issues to be addressed during various phases of the project. If the recommendations presented in this report are not implemented in full, the general recommendations may become inapplicable and Martens & Associates accept no responsibility whatsoever for the performance of the works undertaken.

Occasionally, sub-surface conditions between and below the completed boreholes or other tests may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact Martens & Associates.

Relative ground surface levels at borehole locations may not be accurate and should be verified by onsite survey.

Engineering Reports - Project Specific Criteria

Engineering reports are prepared by qualified personnel. They are based on information obtained, on current engineering standards of interpretation and analysis, and on the basis of your unique project specific requirements as understood by Martens. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the Client.

Where the report has been prepared for a specific design proposal (e.g. a three storey building), the information and interpretation may not be relevant if the design proposal is changed (e.g. to a twenty storey building). Your report should not be relied upon, if there are changes to the project, without first asking Martens to assess how factors, which changed subsequent to the date of the report, affect the report's recommendations. Martens will not accept responsibility for problems that may occur due to design changes, if not consulted.

Engineering Reports – Recommendations

Your report is based on the assumption that site conditions, as may be revealed through selective point sampling, are indicative of actual conditions throughout an area. This assumption often cannot be substantiated until project implementation has commenced. Therefore your site investigation report recommendations should only be regarded as preliminary.

Only Martens, who prepared the report, are fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report, there is a risk that the report will be misinterpreted and Martens cannot be held responsible for such misinterpretation.

Engineering Reports – Use for Tendering Purposes

Where information obtained from investigations is provided for tendering purposes, Martens recommend that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document.

Martens would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Engineering Reports – Data

The report as a whole presents the findings of a site assessment and should not be copied in part or altered in any way.

Logs, figures, drawings etc are customarily included in a Martens report and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), desktop studies and laboratory evaluation of field samples. These data should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Engineering Reports – Other Projects

To avoid misuse of the information contained in your report it is recommended that you confer with Martens before passing your report on to another party who may not be familiar with the background and purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Subsurface Conditions - General

Every care is taken with the report in relation to interpretation of subsurface conditions, discussion of geotechnical aspects, relevant standards and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

 Unexpected variations in ground conditions - the potential will depend partly on test point (eg. excavation or borehole) spacing and sampling frequency, which are often limited by project imposed budgetary constraints.

Important Information About Your Report (2 of 2)

- Changes in guidelines, standards and policy or interpretation of guidelines, standards and policy by statutory authorities.
- o The actions of contractors responding to commercial pressures.
- Actual conditions differing somewhat from those inferred to exist, because no professional, no matter how qualified, can reveal precisely what is hidden by earth, rock and time.

The actual interface between logged materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

If these conditions occur, Martens will be pleased to assist with investigation or providing advice to resolve the matter.

Subsurface Conditions - Changes

Natural processes and the activity of man create subsurface conditions. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Reports are based on conditions which existed at the time of the subsurface exploration / assessment.

Decisions should not be based on a report whose adequacy may have been affected by time. If an extended period of time has elapsed since the report was prepared, consult Martens to be advised how time may have impacted on the project.

Subsurface Conditions - Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those that were expected from the information contained in the report, Martens requests that it immediately be notified. Most problems are much more readily resolved at the time when conditions are exposed, rather than at some later stage well after the event.

Report Use by Other Design Professionals

To avoid potentially costly misinterpretations when other design professionals develop their plans based on a Martens report, retain Martens to work with other project professionals affected by the report. This may involve Martens explaining the report design implications and then reviewing plans and specifications produced to see how they have incorporated the report findings.

Subsurface Conditions – Geo-environmental Issues

Your report generally does not relate to any findings, conclusions, or recommendations about the potential for hazardous or contaminated materials existing at the site unless specifically required to do so as part of Martens' proposal for works.

Specific sampling guidelines and specialist equipment, techniques and personnel are typically used to perform geo-environmental or site contamination assessments. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Martens for information relating to such matters.

Responsibility

Geo-environmental reporting relies on interpretation of factual information based on professional judgment and opinion and has an inherent level of uncertainty attached to it and is typically far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded.

To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Martens to other parties but are included to identify where Martens' responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Martens closely and do not hesitate to ask any questions you may have.

Site Inspections

Martens will always be pleased to provide engineering inspection services for aspects of work to which this report relates. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site. Martens is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction.

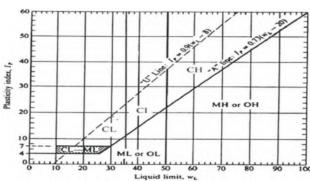
martens consulting engineers

Explanation of Terms (1 of 3)

Definitions

In engineering terms, soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material does not exhibit any visible rock properties and can be remoulded or disintegrated by hand in its field condition or in water, it is described as a soil. Other materials are described using rock description terms.

The methods of description and classification of soils and rocks used in this report are typically based on Australian Standard 1726 and the Unified Soil Classification System (USCS) – refer Soil Data Explanation of Terms (2 of 3). In general, descriptions cover the following properties: strength or density, colour, moisture, structure, soil or rock type and inclusions.


Particle Size

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (e.g. sandy CLAY). Unless otherwise stated, particle size is described in accordance with the following table.

Division	Subdi	vision	Particle Size (mm)
	BOULDERS		>200
Oversized	COBBLES		63 to 200
		Coarse	19 to 63
	GRAVEL	Medium	6.7 to 19
Coarse		Fine	2.36 to 6.7
Grained Soil	SAND	Coarse	0.6 to 2.36
		Medium	0.21 to 0.6
		Fine	0.075 to 0.21
Fine	SILT		0.002 to 0.075
Grained Soil	CLAY		< 0.002

Plasticity Properties

Plasticity properties of cohesive soils can be assessed in the field by tactile properties or by laboratory procedures.

Soil Moisture Condition

Coarse Grained (Granular) Soil:

_		
	Dry (D):	Looks and feels dry. Cemented soils are hard, friable or powdery. Uncemented soils run freely through fingers.
	Moist (M):	Feels cool and damp and is darkened in colour. Particles tend to cohere.
	Wet (W):	As for moist but with free water forming on hands when handled.

Fine Grained (Cohesive) Soil:

Moist, dry of plastic limit ¹ (w < PL):	Looks and feels dry. Hard, friable or powdery.					
Moist, near plastic limit (w ≈ PL):	Can be moulded, feels cool and damp, is darkened in colour, at a moisture content approximately equal to the PL.					
Moist, wet of plastic limit (w > PL):	Usually weakened and free water forms on hands when handled.					
Wet, near liquid limit² (w ≈ LL)						
Wet, wet of liquid limit (w	> LL)					

¹ Plastic Limit (PL): Moisture content at which soil becomes too dry to be in a plastic condition.

Consistency of Cohesive Soils

Cohesive soils refer to predominantly clay materials.

(Note: consistency is affected by soil moisture condition at time of measurement)

Term	C _u (kPa)	Field Guide
Very Soft (VS)	≤12	A finger can be pushed well into the soil with little effort. Sample exudes between fingers when squeezed in fist.
Soft (S)	>12 and ≤25	A finger can be pushed into the soil to about 25mm depth. Easily moulded by light finger pressures.
Firm (F)	>25 and ≤50	The soil can be indented about 5mm with the thumb, but not penetrated. Can be moulded by strong figure pressure.
Stiff (St)	>50 and ≤100	The surface of the soil can be indented with the thumb, but not penetrated. Cannot be moulded by fingers.
Very Stiff (VSt)	>100 and ≤200	The surface of the soil can be marked, but not indented with thumb pressure. Difficult to cut with a knife. Thumbnail can readily indent.
Hard (H)	> 200	The surface of the soil can only be marked with the thumbnail. Brittle. Tends to break into fragments.
Friable (Fr)	-	Crumbles or powders when scraped by thumbnail. Can easily be crumbled or broken into small pieces by hand.

Density of Granular Soils

Non-cohesive soils are classified on the basis of relative density, generally from standard penetration test (SPT) or Dutch cone penetrometer test (CPT) results as below:

Relative Density	%	SPT 'N' Value* (blows/300mm)	CPT Cone Value (qc MPa)
Very loose	≤15	< 5	< 2
Loose	>15 and ≤35	5 - 10	2 - 5
Medium dense	>35 and ≤65	10 - 30	5 - 15
Dense	>65 and ≤85	30 - 50	15 - 25
Very dense	> 85	> 50	> 25

Values may be subject to corrections for overburden pressures and equipment type and influenced by soil moisture condition at time of measurement.

Minor Components

Minor components in soils may be present and readily detectable, but have little bearing on general geotechnical classification. Terms include:

Description		Proportion of component in:							
of		coarse	fine grained soil						
components	% Fines	Terminology	% Accessory coarse fraction	Terminology	% Sand/ gravel	Terminology			
Minor	≤5	Trace clay / silt, as applicable	≤15	Trace sand / gravel, as applicable	≤15	Trace sand / gravel, as applicable			
	>5,≤12	With clay / silt, as applicable	>15,≤30	With sand / gravel, as applicable	>5,≤30	With sand / gravel, as applicable			
Secondary	>12	Prefix soil name as 'silty' or 'clayey', as applicable	>30	Prefix soil name as 'sandy' or 'gravelly', as applicable	>30	Prefix soil name as 'sandy' or 'gravelly', as applicable			

² Liquid Limit (LL): Moisture content at which soil passes from plastic to liquid state.

Soil Data

Explanation of Terms (2 of 3)

Symbols for Soils and Other

SOILS OTHER COBBLES/BOULDERS SILT (ML or MH) FILL ORGANIC SILT or CLAY (OH or GRAVEL (GP or GW) **TALUS** OL) Silty GRAVEL (GM) CLAY (CL, CI or CH) **ASPHALT** CONCRETE Clayey GRAVEL (GC) Silty CLAY SAND (SP or SW) Sandy CLAY TOPSOIL Silty SAND (SM) PEAT (Pt) Clayey SAND (SC) Gravelly CLAY

Unified Soil Classification Scheme (USCS)

	FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 63 mm and basing fractions on estimated mass)								Primary Name			
.5 mm		rse 5 mm.	Land	/EL- 4D ures ines)	Wie		te and substantial amounts of all intermediate particle agh fines to bind coarse grains; no dry strength	GW	GRAVEL			
.S is larger than 0.07	/ELS alf of coa than 2.36	GRAVEL and	GRAVEL- SAND Mixtures (\$ 5% fines)			size or a range of sizes with some intermediate sizes ough fines to bind coarse grains; no dry strength	GP	GRAVEL				
		GRAVELS More than half of coarse fraction is larger than 2.36 mm.	I-SILT	:AVEL- -SILT ures ines) 1	W		tic fines (for identification procedures see ML below); dium dry strength; may also contain sand	GM	Silty GRAVEL			
AINED SO an 63 mm	d eye)	Mor	GRAVEL-SILT	and GRAVEL- SAND-SILT mixtures (\$12% fines) 1			fines (for identification procedures see CL below); o high dry strength; may also contain sand	GC	Clayey GRAVE			
COARSE GRAINED SOILS iterial less than 63 mm is	the nake	arse 36 mm	and	GRAVEL- SAND mixtures (±5% fines)	W		izes and substantial amounts of all intermediate sizes; fines to bind coarse grains; no dry strength.	SW	SAND			
Smaller More than 65 % of material less than 63 mm is larger than 0.075 mm is about the smallest particle visible to the naked eye)	visible to	SANDS More than half of coarse fraction is smaller than 2.36 mm	SAND	GRAVEL- SAND mixtures (<5% fines)			size or a range of sizes with some intermediate sizes ough fines to bind coarse grains; no dry strength	SP	SAND			
	particle	SANDS re than half on is smaller th	SAND-SILT	and SAND- CLAY mixtures ≥12% fines) ¹	W	/ith excess non-plas	tic fines (for identification procedures see ML below); zero to medium dry strength;	SM	Silty SAND			
More t	smallest	Mol	SAN	and SAND CLAY mixtures (≥12% fines)		With excess plastic	fines (for identification procedures see CL below); medium to high dry strength	SC	Clayey SAND			
_	ot the					IDENTIFICAT	ION PROCEDURES ON FRACTIONS < 0.2 MM					
s smalle	icle is abou	icle is abo	DRY STRENG (Crushing Characteristi		DILATANCY	1	TOUGHNESS	DESCRIPTION	USCS	Primary Name		
63 mm	n particle	None to Lo	w	Quick to Slo	w	Low	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or silt with low plasticity $^{\rm 2}$	ML	SILT ³			
:D SOILS	(A 0.075 mm	(A 0.075 mm	(A 0.075 mm	0.075 mm	Medium to High)	None to Slo	w	Medium	Inorganic clays of low to medium plasticity, gravely clays, sandy clays, silty clays, lean clays	CL (or Cl ⁴)	CLAY
FINE GRAINED SOILS of material less than than 0.075 mm				Low to Medi	um	Slow		Low	Organic slits and organic silty clays of low plasticity	OL	Organic SILT o CLAY	
FINE GRAINED SOILS More than 35 % of material less than 63 mm is smaller than 0.075 mm (A 0.075 mm particle is abou		Low to Medi	um	None to Slo	w	Low to Medium	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	МН	SILT ³			
ore than		High to Ver High	У	None		High	Inorganic clays of high plasticity, fat clays	СН	CLAY			
		Medium to High)	None to Ve Slow	ry	Low to Medium	Organic clays of medium to high plasticity, organic silt of high plasticity	ОН	Organic SILT o CLAY			
HIGHLY ORG SOILS	ANIC		Rea	idilv identified	l bv c	colour, odour, spond	gy feel and frequently by fibrous texture	Pt	PEAT			

- Between 5% and 12% dual classification, e.g. GP-GM.
- Low Plasticity Clay Liquid Limit W_L *35%; Medium Plasticity Clay Liquid limit W_L *35%, *50%; High Plasticity Clay Liquid limit W_L *50%. Low Plasticity Silt Liquid Limit W_L *50%; High Plasticity Silt Liquid Limit W_L *50%.
- CI may be adopted for clay of medium plasticity to distinguish from clay of low plasticity.

Soil Data

Explanation of Terms (3 of 3)

Soil Agricultural Classification Scheme

In some situations, such as where soils are to be used for effluent disposal purposes, soils are often more appropriately classified in terms of traditional agricultural classification schemes. Where a Martens report provides agricultural classifications, these are undertaken in accordance with descriptions by Northcote, K.H. (1979) The factual key for the recognition of Australian Soils, Rellim Technical Publications, NSW, p 26 - 28.

Symbol	Field Texture Grade	Behaviour of moist bolus	Ribbon length	Clay content (%)
S	Sand	Coherence nil to very slight; cannot be moulded; single grains adhere to fingers	0 mm	< 5
LS	Loamy sand	Slight coherence; discolours fingers with dark organic stain	6.35 mm	5
CLS	Clayey sand	Slight coherence; sticky when wet; many sand grains stick to fingers; discolours fingers with clay stain	6.35mm - 1.3cm	5 - 10
SL	Sandy loam	Bolus just coherent but very sandy to touch; dominant sand grains are of medium size and are readily visible	1.3 - 2.5	10 - 15
FSL	Fine sandy loam	Bolus coherent; fine sand can be felt and heard	1.3 - 2.5	10 - 20
SCL-	Light sandy clay loam	Bolus strongly coherent but sandy to touch, sand grains dominantly medium size and easily visible	2.0	15 - 20
L	Loam	Bolus coherent and rather spongy; smooth feel when manipulated but no obvious sandiness or silkiness; may be somewhat greasy to the touch if much organic matter present	2.5	25
Lfsy	Loam, fine sandy	Bolus coherent and slightly spongy; fine sand can be felt and heard when manipulated	2.5	25
SiL	Silt loam	Coherent bolus, very smooth to silky when manipulated	2.5	25 + > 25 silt
SCL	Sandy clay loam	Strongly coherent bolus sandy to touch; medium size sand grains visible in a finer matrix	2.5 - 3.8	20 - 30
CL	Clay loam	Coherent plastic bolus; smooth to manipulate	3.8 - 5.0	30 - 35
SiCL	Silty clay loam	Coherent smooth bolus; plastic and silky to touch	3.8 - 5.0	30- 35 + > 25 silt
FSCL	Fine sandy clay loam	Coherent bolus; fine sand can be felt and heard	3.8 - 5.0	30 - 35
SC	Sandy clay	Plastic bolus; fine to medium sized sands can be seen, felt or heard in a clayey matrix	5.0 - 7.5	35 - 40
SiC	Silty clay	Plastic bolus; smooth and silky	5.0 - 7.5	35 - 40 + > 25 silt
LC	Light clay	Plastic bolus; smooth to touch; slight resistance to shearing	5.0 - 7.5	35 - 40
LMC	Light medium clay	Plastic bolus; smooth to touch, slightly greater resistance to shearing than LC	7.5	40 - 45
МС	Medium clay	Smooth plastic bolus, handles like plasticine and can be moulded into rods without fracture, some resistance to shearing	> 7.5	45 - 55
НС	Heavy clay	Smooth plastic bolus; handles like stiff plasticine; can be moulded into rods without fracture; firm resistance to shearing	> 7.5	> 50

Rock Data

Explanation of Terms (1 of 2)

Symbols for Rock

SEDIMENTARY ROCK

0000

BRECCIA

CONGLOMERATE

COAL

LIMESTONE

LITHIC TUFF

SLATE, PHYLLITE, SCHIST

GNEISS

METAMORPHIC ROCK

METASANDSTONE

METASILTSTONE

METAMUDSTONE

CONGLOMERATIC SANDSTONE

SANDSTONE/QUARTZITE

SILTSTONE

SHALE

MUDSTONE/CLAYSTONE

IGNEOUS ROCK

GRANITE

DOLERITE/BASALT

Definitions

Descriptive terms used for Rock by Martens are based on AS1726 and encompass rock substance, defects and mass.

Rock Material The intact rock that is bounded by defects.

Rock Defect Discontinuity, fracture, break or void in the material or minerals across which there is little or no tensile strength.

Rock Structure The nature and configuration of the different defects within the rock mass and their relationship to each other.

Rock Mass The entirety of the system formed by all of the rock material and all of the defects that are present.

Degree of Weathering

Rock weathering is defined as the degree of decline in rock structure and grain property and can be determined in the field.

Term	Symbol	Definition
Residual soil ¹	RS	Material is weathered to such an extent that it has soil properties. Mass structure, material texture, and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered ¹	XW	Material is weathered to such an extent that it has soil properties - i.e. it can be remoulded and can be classified according to the Unified Classification System. Mass structure and material texture and fabric of original rock are still visible.
Highly weathered ²	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the original colour of the rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered ²	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the rock is not recognisable. Rock strength shows little or no change from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	Rock substance unaffected by weathering. No sign of decomposition of individual materials or colour changes.

Notes:

2. The term "Distinctly Weathered" (DW) may be used to cover the range of substance weathering between EW and SW

Rock Strength

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the direction normal to the loading. The test procedure is described by the International Society of Rock Mechanics.

Term (Strength)	I₅ (50) MPa	Uniaxial Compressive Strength MPa	Field Guide	Symbol
Very low	>0.03 ≤0.1	0.6 – 2	May be crumbled in the hand. Sandstone is 'sugary' and friable.	VL
Low	>0.1 ≤0.3	2-6	Core 150mm long x 50mm diameter may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.	L
Medium	>0.3 ≤1.0	6 – 20	Core 150mm long x 50mm diameter can be broken by hand with considerable difficulty. Readily scored with a knife.	М
High	>1 ≤3	20 – 60	Core 150mm long x 50mm diameter cannot be broken by unaided hands, can be slightly scratched or scored with a knife. Breaks with single blow from pick.	Н
Very high	>3 ≤10	60 – 200	Core 150mm long x 50mm diameter, broken readily with hand held hammer. Cannot be scratched with knife. Breaks after more than one pick strike.	VH
Extremely high	>10	>200	A piece of core 150mm long x 50mm diameter is difficult to break with hand held hammer. Rings when struck with a hammer.	EH

¹ RS and EW material is described using soil descriptive terms.

Explanation of Terms (2 of 2)

Degree of Fracturing

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core is discontinuous. These include bedding plane partings, joints and other rock defects, but exclude fractures such as drilling breaks (DB) or handling breaks (HB).

Term	Description
Fragmented	The core is comprised primarily of fragments of length less than 20 mm, and mostly of width less than core diameter.
Highly fractured	Core lengths are generally less than 20 mm to 40 mm with occasional fragments.
Fractured	Core lengths are mainly 30 mm to 100 mm with occasional shorter and longer sections.
Slightly fractured	Core lengths are generally 300 mm to 1000 mm, with occasional longer sections and sections of 100 mm to 300 mm.
Unbroken	The core does not contain any fractures.

Rock Core Recovery

TCR = Total Core Recovery

SCR = Solid Core Recovery

RQD = Rock Quality Designation

 $= \frac{\text{Length of core recovered}}{\text{Length of core run}} \times 100\%$

 $= \frac{\sum \text{Length of cylindrica I core recovered}}{\text{Length of core run}} \times 100\,\%$

 $= \frac{\sum \text{Axial lengths of core} > 100 \text{ mm long}}{\text{Length of core run}} \times 100 \,\%$

Rock Strength Tests

- ▼ Point load strength Index (Is50) axial test (MPa)
- Point load strength Index (Is50) diametral test (MPa)
- Uniaxial compressive strength (UCS) (MPa)

Defect Type Abbreviations and Descriptions

.Defect T	ype (with inclination given)	Planarity	<i></i>	Rough	.Roughness		
BP	Bedding plane parting	PI	Planar	Pol	Polished		
FL	Foliation	Cu	Curved	SI	Slickensided		
CL	Cleavage	Un	Undulating	Sm	Smooth		
JT	Joint	St	Stepped	Ro	Rough		
FC	Fracture	lr	Irregular	VR	Very rough		
SZ/SS	Sheared zone/ seam (Fault)	Dis	Discontinuous				
CZ/CS	CZ/CS Crushed zone/ seam		Thickness		.Coating or Filling		
DZ/DS FZ IS VN CO HB DB	Decomposed zone/ seam Fractured Zone Infilled seam Vein Contact Handling break Drilling break	Zone Seam Plane	> 100 mm > 2 mm < 100 mm < 2 mm	Cn Sn Ct Vnr Fe X Qz	Clean Stain Coating Veneer Iron Oxide Carbonaceous Quartzite Unidentified mineral		
		Inclinati	Inclination				
			on of defect is measured from perper n of defect is measured clockwise (loc				

martens consulting engineer

Test, Drill and Excavation Methods

Sampling

Sampling is carried out during drilling or excavation to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling or excavation provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples may be taken by pushing a thin-walled sampling tube, e.g. U_{50} (50 mm internal diameter thin walled tube), into soils and withdrawing a soil sample in a relatively undisturbed state. Such samples yield information on structure and strength and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils. Other sampling methods may be used. Details of the type and method of sampling are given in the report.

Drilling / Excavation Methods

The following is a brief summary of drilling and excavation methods currently adopted by the Company and some comments on their use and application.

<u>Hand Excavation</u> - in some situations, excavation using hand tools, such as mattock and spade, may be required due to limited site access or shallow soil profiles.

<u>Hand Auger</u> - the hole is advanced by pushing and rotating either a sand or clay auger, generally 75-100 mm in diameter, into the ground. The penetration depth is usually limited to the length of the auger pole; however extender pieces can be added to lengthen this.

<u>Test Pits</u> - these are excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils and, if it is safe to descend into the pit, collection of bulk disturbed samples. The depth of penetration is limited to about 3 m for a backhoe and up to 6 m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

<u>Large Diameter Auger (e.g. Pengo)</u> - the hole is advanced by a rotating plate or short spiral auger, generally 300 mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

<u>Continuous Sample Drilling (Push Tube)</u> - the hole is advanced by pushing a 50 - 100 mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling in soils, since moisture content is unchanged and soil structure, strength *etc.* is only marginally affected.

<u>Continuous Spiral Flight Augers</u> - the hole is advanced using 90 - 115 mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface or, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

Explanation of Terms (1 of 3)

Non-core Rotary Drilling - the hole is advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from 'feel' and rate of penetration.

<u>Rotary Mud Drilling</u> - similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. from SPT).

<u>Continuous Core Drilling</u> - a continuous core sample is obtained using a diamond tipped core barrel of usually 50 mm internal diameter. Provided full core recovery is achieved (not always possible in very weak or fractured rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

In-situ Testing and Interpretation

Cone Penetrometer Testing (CPT)

Cone penetrometer testing (sometimes referred to as Dutch Cone) described in this report has been carried out using an electrical friction cone penetrometer.

The test is described in AS 1289.6.5.1-1999 (R2013). In the test, a 35 mm diameter rod with a cone tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system.

Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130 mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected by electrical wires passing through the push rod centre to an amplifier and recorder unit mounted on the control truck. As penetration occurs (at a rate of approximately 20 mm per second) the information is output on continuous chart recorders. The plotted results given in this report have been traced from the original records. The information provided on the charts comprises:

- Cone resistance (q_c) the actual end bearing force divided by the cross sectional area of the cone, expressed in MPa.
- (ii) Sleeve friction (qt) the frictional force of the sleeve divided by the surface area, expressed in kPa.
- (iii) Friction ratio the ratio of sleeve friction to cone resistance, expressed in percent.

There are two scales available for measurement of cone resistance. The lower (A) scale (0 - 5 MPa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main (B) scale (0 - 50 MPa) is less sensitive and is shown as a full line.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1 % - 2 % are commonly encountered in sands and very soft clays rising to 4 % - 10 % in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:

 q_c (MPa) = (0.4 to 0.6) N (blows/300 mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range:

 $q_c = (12 \text{ to } 18) C_u$

Explanation of Terms (2 of 3)

Interpretation of CPT values can also be made to allow estimation of modulus or compressibility values to allow calculation of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on soil classification is required, direct drilling and sampling may be preferable.

Standard Penetration Testing (SPT)

Standard penetration tests are used mainly in non-cohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample.

The test procedure is described in AS 1289.6.3.1-2004. The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm penetration depth increments and the 'N' value is taken as the number of blows for the last two 150 mm depth increments (300 mm total penetration). In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued. The test results are reported in the following form:

(i) Where full 450 mm penetration is obtained with successive blow counts for each 150 mm of say 4, 6 and 7 blows:

as 4, 6, 7 N = 13

(ii) Where the test is discontinued, short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm

as 15, 30/40 mm.

The results of the tests can be related empirically to the engineering properties of the soil. Occasionally, the test method is used to obtain samples in 50 mm diameter thin walled sample tubes in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

Dynamic Cone (Hand) Penetrometers

Hand penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150mm increments of penetration. Normally, there is a depth limitation of 1.2m but this may be extended in certain conditions by the use of extension rods. Two relatively similar tests are used.

Perth sand penetrometer (PSP) - a 16 mm diameter flat ended rod is driven with a 9 kg hammer, dropping 600 mm. The test, described in AS 1289.6.3.3-1997 (R2013), was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling.

Cone penetrometer (DCP) - sometimes known as the Scala Penetrometer, a 16 mm rod with a 20 mm diameter cone end is driven with a 9 kg hammer dropping 510 mm. The test, described in AS 1289.6.3.2-1997 (R2013), was developed initially for pavement sub-grade investigations, with correlations of the test results with California Bearing Ratio published by various Road Authorities.

Pocket Penetrometers

The pocket (hand) penetrometer (PP) is typically a light weight spring hand operated device with a stainless steel

loading piston, used to estimate unconfined compressive strength, q_{ν} , (UCS in kPa) of a fine grained soil in field conditions. In use, the free end of the piston is pressed into the soil at a uniform penetration rate until a line, engraved near the piston tip, reaches the soil surface level. The reading is taken from a gradation scale, which is attached to the piston via a built-in spring mechanism and calibrated to kilograms per square centimetre (kPa) UCS. The UCS measurements are used to evaluate consistency of the soil in the field moisture condition. The results may be used to assess the undrained shear strength, C_{ν} , of fine grained soil using the approximate relationship:

 $q_{\upsilon} = 2 \times C_{\upsilon}$.

It should be noted that accuracy of the results may be influenced by condition variations at selected test surfaces. Also, the readings obtained from the PP test are based on a small area of penetration and could give misleading results. They should not replace laboratory test results. The use of the results from this test is typically limited to an assessment of consistency of the soil in the field and not used directly for design of foundations.

Test Pit / Borehole Logs

Test pit / borehole log(s) presented herein are an engineering and / or geological interpretation of the subsurface conditions. Their reliability will depend to some extent on frequency of sampling and methods of excavation / drilling. Ideally, continuous undisturbed sampling or excavation / core drilling will provide the most reliable assessment but this is not always practicable, or possible to justify on economic grounds. In any case, the test pit / borehole logs represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of test pits / boreholes, the frequency of sampling and the possibility of other than 'straight line' variation between the test pits / boreholes.

Laboratory Testing

Laboratory testing is carried out in accordance with AS 1289 Methods of Testing Soil for Engineering Purposes. Details of the test procedure used are given on the individual report forms.

Ground Water

Where ground water levels are measured in boreholes, there are several potential problems:

- In low permeability soils, ground water although present, may enter the hole slowly, or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent prior weather changes. They may not be the same at the time of construction as are indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made.

More reliable measurements can be made by installing standpipes, which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Test, Drill and Excavation Methods

Explanation of Terms (3 of 3)

DRILLING / EXCAVATION METHOD

HA	Hand Auger	RD	Rotary Blade or Drag Bit	NQ	Diamond Core - 47 mm
AD/V	Auger Drilling with V-bit	RT	Rotary Tricone bit	NMLC	Diamond Core – 51.9 mm
AD/T	Auger Drilling with TC-Bit	RAB	Rotary Air Blast	HQ	Diamond Core – 63.5 mm
AS	Auger Screwing	RC	Reverse Circulation	HMLC	Diamond Core – 63.5 mm
HSA	Hollow Stem Auger	CT	Cable Tool Rig	DT	Diatube Coring
S	Excavated by Hand Spade	PT	Push Tube	NDD	Non-destructive digging
ВН	Tractor Mounted Backhoe	PC	Percussion	PQ	Diamond Core - 83 mm
JET	Jetting	E	Tracked Hydraulic Excavator	Χ	Existing Excavation

SUPPORT

Nil	No support	S	Shotcrete	RB	Rock Bolt
С	Casing	Sh	Shoring	SN	Soil Nail
WB	Wash bore with Blade or Bailer	WR	Wash bore with Roller	T	Timbering

WATER

 ∇ Water level at date shown

○ Partial water loss

■ Complete water loss

GROUNDWATER NOT OBSERVED (NO)

The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

GROUNDWATER NOT ENCOUNTERED (NX)

The borehole/test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/test pit been left open for a longer period.

PENETRATION / EXCAVATION RESISTANCE

- L Low resistance: Rapid penetration possible with little effort from the equipment used.
- M Medium resistance: Excavation possible at an acceptable rate with moderate effort from the equipment used.
- H High resistance: Further penetration possible at slow rate & requires significant effort equipment.
- Refusal/ Practical Refusal. No further progress possible without risk of damage/ unacceptable wear to digging implement / machine.

These assessments are subjective and dependent on many factors, including equipment power, weight, condition of excavation or drilling tools, and operator experience.

SAMPLING

D	Small disturbed sample	W	Water Sample	С	Core sample
В	Bulk disturbed sample	G	Gas Sample	CONC	Concrete Core

U63 Thin walled tube sample - number indicates nominal undisturbed sample diameter in millimetres

TESTING

SPT	Standard Penetration Test to AS1289.6.3.1-2004	CPT	Static cone penetration test CPT with pore pressure (u) measurement				
4,7,11	4,7,11 = Blows per 150mm.	CPTu					
N=18	'N' = Recorded blows per 300mm penetration following 150mm seating	PP	Pocket penetrometer test expressed as instrument reading (kPa)				
DCP	Dynamic Cone Penetration test to AS1289.6.3.2-1997. 'n' = Recorded blows per 150mm penetration	FP	Field permeability test over section noted				
Notes:	·		Field vane shear test expressed as uncorrected shear strength (sv = peak value, sr = residual				
RW	Penetration occurred under rod weight only		value)				
HW	Penetration occurred under hammer and rod weight only	PM	Pressuremeter test over section noted				
20/100mm	Omm Where practical refusal or hammer double bouncing occurred, blows and penetration for that interval are reported (e.g. 20 blows		Photoionisation Detector reading in ppm				
		\M/PT	Water pressure tests				

SOIL DESCRIPTION

for 100 mm penetration)

ROCK DESCRIPTION

Density		ity Consistency		Moist	Moisture		Strength		Weathering	
VL	Very loose	VS	Very soft	D	Dry	VL	Very low	EW	Extremely weathered	
L	Loose	S	Soft	M	Moist	L	Low	HW	Highly weathered	
MD	Medium dense	F	Firm	W	Wet	M	Medium	MW	Moderately weathered	
D	Dense	St	Stiff	Wp	Plastic limit	Н	High	SW	Slightly weathered	
VD	Very dense	VSt	Very stiff	WI	Liquid limit	VH	Very high	FR	Fresh	
		Н	Hard			EH	Extremely high			